
Simulink® Requirements™
Reference

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Requirements™ Reference
© COPYRIGHT 2017–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2017 Online only New for Version 1.0 (Release 2017b)
March 2018 Online only Revised for Version 1.1 (Release 2018a)
September 2018 Online Only Revised for Version 1.2 (Release 2018b)
March 2019 Online only Revised for Version 1.3 (Release R2019a)
September 2019 Online Only Revised for Version 1.4 (Release 2019b)
March 2020 Online only Revised for Version 1.5 (Release 2020a)
September 2020 Online only Revised for Version 1.6 (Release 2020b)
March 2021 Online only Revised for Version 1.7 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions
1

Classes
2

Methods
3

Blocks
4

iii

Contents

Functions

1

slreq.clear
Clear requirements and links from memory

Syntax
slreq.clear()

Description
slreq.clear() clears all requirements and links loaded in memory and closes the Requirements
Editor, discarding all unsaved changes.

See Also
slreq.LinkSet | slreq.ReqSet

Introduced in R2018a

1 Functions

1-2

slreq.cmConfigureVersion
Set version of linked requirements documents

Syntax
prev_version = slreq.cmConfigureVersion(domain,doc_id,version)
prev_version = slreq.cmConfigureVersion(domain,doc_id,version,src)

Description
prev_version = slreq.cmConfigureVersion(domain,doc_id,version) sets the configured
version version of the linked requirements document doc_id of type domain and returns the
previously configured version prev_version.

prev_version = slreq.cmConfigureVersion(domain,doc_id,version,src) sets the
configured version version of the linked requirements document doc_id of type domain for all
links from the Model-Based Design artifact src and returns the previously configured version
prev_version.

Examples
Set Configured Version for All Links to IBM Rational DOORS Module Baseline

Use baseline version 2.2b for all links to the IBM Rational DOORS module 546223g1.

% Set configured version to 2.1b
versionA = slreq.cmConfigureVersion('linktype_rmi_doors','546223g1','2.1b')

versionA =

 0×0 empty char array

% versionA is empty because there is no previously configured version

versionB = slreq.cmConfigureVersion('linktype_rmi_doors','546223g1','2.2b')

versionB =

 '2.1b'

% 2.1b is the previously set configured version

Set Configured Version for Links from Simulink Model to IBM Rational DOORS Module
Baseline

Use baseline version 2.3b for links from the Simulink® model myModel.slx to the IBM Rational
DOORS module 00006a12.

% Set configured version to 2.1b
versionA = slreq.cmConfigureVersion('linktype_rmi_doors', '00006a12', '2.1b', 'myModel.slx')

 slreq.cmConfigureVersion

1-3

versionA =

 0×0 empty char array

% versionA is empty because there is no previously configured version

% Set the configured version to 2.3b

versionB = slreq.cmConfigureVersion('linktype_rmi_doors', '00006a12', '2.3b', 'myModel.slx')

versionB =

 '2.1b'

% 2.1b is the previously set configured version

Input Arguments
domain — Document type name
'linktype_rmi_doors' | character vector | string

Registered document type name, specified as a character vector or a string. As of R2019b, link target
version configuration is supported only for IBM® Rational® DOORS® with the value
'linktype_rmi_doors'.

doc_id — Requirements document identifier
character vector | string

Unique identifier for a version-controlled requirements document, specified as a character vector or a
string.

version — Requirements document target version
character vector | string

Target version of the requirements document, specified as a character vector or a string.

src — Source artifact file name
character vector | string

The file name of the Model-Based Design source artifact, specified as a character vector or a string.

Output Arguments
prev_version — Document version
character vector

Previously configured version of the linked requirements document, returned as a character vector.

See Also
slreq.cmGetVersion

Introduced in R2019b

1 Functions

1-4

slreq.cmGetVersion
Get configured version of linked requirements documents

Syntax
doc_version = slreq.cmGetVersion(domain,doc_id)
doc_version = slreq.cmGetVersion(domain,doc_id,src)

Description
doc_version = slreq.cmGetVersion(domain,doc_id) queries the configured version
doc_version of the linked requirements document doc_id of type domain.

doc_version = slreq.cmGetVersion(domain,doc_id,src) queries the configured version
doc_version of the linked requirements document doc_id of type domain that is linked to the
Model-Based Design artifact src.

Examples
Query Configured Version for IBM Rational DOORS Module

Get the configured baseline version for the IBM Rational DOORS module 1213424d.

configVer = slreq.cmGetVersion('linktype_rmi_doors','1213424d')

configVer =

 '1.3a'

Query Configured Version for Links from a Simulink Model to IBM Rational DOORS Module

Get the configured baseline version for links from the Simulink model myModel.slx for the IBM
Rational DOORS module 1234a45a.

configVer = slreq.cmGetVersion('linktype_rmi_doors', '1234a45a', 'myModel.slx')

configVer =

 '2.4c'

Input Arguments
domain — Document type name
'linktype_rmi_doors' | character vector | string

Registered document type name, specified as a character vector or a string. As of R2019b, link target
version configuration is supported only for IBM Rational DOORS with the value
'linktype_rmi_doors'.

doc_id — Requirements document identifier
character vector | string

 slreq.cmGetVersion

1-5

Unique identifier for a version-controlled requirements document, specified as a character vector or a
string.

src — Source artifact file name
character vector | string

The file name of the Model-Based Design source artifact, specified as a character vector or a string.

Output Arguments
doc_version — Document version
character vector

Configured version of the linked requirements document, returned as a character vector.

See Also
slreq.cmConfigureVersion

Introduced in R2019b

1 Functions

1-6

slreq.convertAnnotation
Convert annotations to requirement objects

Syntax
myReq = slreq.convertAnnotation(myAnnotation,myDestination)
myReq = slreq.convertAnnotation(myAnnotation,myDestination,Name,Value)

Description
myReq = slreq.convertAnnotation(myAnnotation,myDestination) converts a Simulink or
a Stateflow® annotation myAnnotation into a requirement myReq and stores it in a destination
entity myDestination.

myReq = slreq.convertAnnotation(myAnnotation,myDestination,Name,Value) converts
a Simulink or a Stateflow annotation myAnnotation into a requirement myReq and stores it in a
destination entity myDestination using additional options specified by one or more Name, Value
pair arguments.

Examples
Convert Simulink Annotation to Requirement

% Find all annotations in a Simulink model
allAnnotations = find_system('controller_Model', 'FindAll', ...
'on', 'type', 'annotation');

% Create a new requirements set
newReqSet = slreq.new('myNewReqSet');

% Convert one annotation into a requirement newReq
% and add it to newReqSet
newReq = slreq.convertAnnotation(allAnnotations(1), ...
newReqSet);

Input Arguments
myAnnotation — Simulink or Stateflow annotation
Simulink.Annotation object

The annotation to be converted, specified as a Simulink.Annotation object.

myDestination — Converted annotation destination entity
slreq.Requirement object | slreq.ReqSet object

The destination entity for the converted annotation, specified either as an slreq.Requirement or
as an slreq.ReqSet object.

 slreq.convertAnnotation

1-7

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'CreateLinks', true

CreateLinks — Option to create links
true (default) | false

Option to create links when converting annotations, specified as a Boolean value.

KeepAnnotation — Option to retain annotation
false (default) | true

Option to retain the annotation after conversion, specified as a Boolean value.

IgnoreCallback — Option to force annotation conversion
false (default) | true

Option to specify annotation conversion even if a callback function is specified in the annotation,
specified as a Boolean value.

ShowMarkup — Option to display requirements markup
true (default) | false

Option to display the Requirement markup after annotation conversion, specified as a Boolean value.

Output Arguments
myReq — Requirement
slreq.Requirement object

The converted annotation, returned as an slreq.Requirement object.

See Also
slreq.ReqSet | slreq.Requirement

Introduced in R2018a

1 Functions

1-8

slreq.createLink
Create traceable links

Syntax
myLink = slreq.createLink(src, dest)

Description
myLink = slreq.createLink(src, dest) creates an slreq.Link object myLink that serves as
a link between the source artifact src and the destination artifact dest.

Examples
Create Links

% Create a link between the current Simulink Object and a requirement
link1 = slreq.createLink(gcb, REQ)

link1 =

 Link with properties:

 Type: 'Implement'
 Description: 'Plant Specs'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 02-Sep-2017 15:49:28
 CreatedBy: 'Jane Doe'
 ModifiedOn: 21-Oct-2017 11:34:12
 ModifiedBy: 'John Doe'
 Comments: [0×0 struct]

% Create a link between a requirement and the current Stateflow object
link2 = slreq.createLink(REQ, sfgco);

Input Arguments
src — Link source artifact
structure

The link source artifact, specified as a MATLAB® structure.

dest — Link destination artifact
structure

The link destination artifact, specified as a MATLAB structure.

 slreq.createLink

1-9

Output Arguments
myLink — Link artifact
slreq.Link object

The link between src and dest, specified as an slreq.Link object.

See Also
slreq.Link | slreq.LinkSet

Introduced in R2018a

1 Functions

1-10

slreq.dngConfigure
Configure IBM DOORS Next session in MATLAB

Syntax
slreq.dngConfigure

Description
slreq.dngConfigure allows you to configure your MATLAB session to work with your IBM DOORS
Next project by entering your IBM DOORS Next server URL, port number information, and login
credentials, and selecting a project configuration to work with.

Examples

Configure a MATLAB Session to Work With IBM DOORS Next

This example shows how to establish a connection between MATLAB and IBM DOORS Next.

In the DOORS Server dialog box, provide the DOORS Next server address, port number, and service
root. In the Server Login Name and Server Login Password dialog boxes, enter your login credentials.
In the DOORS Project dialog box, select the project to work with and, if applicable, you might need to
select the configuration context. The Select configuration stream or changeset drop-down only
lists recently used configurations. If your configuration context is not listed, select <more> to query
the full list from the server.

slreq.dngConfigure;

Verifying server address...
Verifying server login username...
When prompted, enter your DOORS Next password
Select Project/Stream/Changeset that you will be working with

Tips
• If the function returns an error and does not open any dialog boxes, at the MATLAB command line,

enter:

connector.securePort

If connector.securePort returns anything other than 31515, close all open instances of
MATLAB and open one instance.

• After you complete all selections in the dialog boxes, MATLAB tests the connection to DOORS
Next in your browser. If the connection is successful, the MATLAB Connector Test dialog box
appears with a confirmation message. If the dialog does not appear, check that MATLAB is
running on the corresponding HTTPS port. At the MATLAB command line, enter:

connector.securePort

 slreq.dngConfigure

1-11

If the output is not 31515, close all open instances of MATLAB and open one instance. If the
dialog box still does not appear, check for security issues with your connection.

See Also
slreq.dngCountLinks | slreq.dngGetProjectConfig | slreq.dngGetUsedConfig |
slreq.dngUpdateConfig

Topics
“Link with Requirements in IBM DOORS Next”
“Requirements Traceability with IBM DOORS Next”

Introduced in R2020a

1 Functions

1-12

slreq.dngCountLinks
Get number of links to IBM Rational DOORS Next Generation artifacts

Syntax
count = slreq.dngCountLinks(sourceArtifact)
count = slreq.dngCountLinks(sourceArtifact, config)

Description
count = slreq.dngCountLinks(sourceArtifact) returns the total number of links from
sourceArtifact to IBM Rational DOORS Next Generation artifacts.

count = slreq.dngCountLinks(sourceArtifact, config) returns the total number of links
from sourceArtifact to the specified IBM Rational DOORS Next Generation configuration config.

Input Arguments
sourceArtifact — Link source artifact name
character vector | string | slreq.LinkSet object

The Simulink link source artifact, specified as a character vector or a string or as an slreq.LinkSet
object.

config — Target project configuration identifier
string | character vector | structure

IBM Rational DOORS Next Generation Project configuration identifier. The configuration identifier
can be the name, ID, or the configuration structure. The name and ID can be specified as a character
vector or string. The configuration structure can be specified as a MATLAB structure.

Output Arguments
count — Link count
double

The total number of links from sourceArtifact to the IBM Rational DOORS Next Generation
Project, returned as a double.

See Also

Introduced in R2018b

 slreq.dngCountLinks

1-13

slreq.dngGetProjectConfig
Query known configurations from IBM Rational DOORS Next Generation server

Syntax
configs = slreq.dngGetProjectConfig()
configs = slreq.dngGetProjectConfig('project', ProjectName)
configs = slreq.dngGetProjectConfig('type', 'stream')
configs = slreq.dngGetProjectConfig('type', 'changeset')
configs = slreq.dngGetProjectConfig('name', ConfigName)
configs = slreq.dngGetProjectConfig('id', ConfigID)

Description
configs = slreq.dngGetProjectConfig() returns an array of structures representing all
known configurations for the current IBM Rational DOORS Next Generation Project.

configs = slreq.dngGetProjectConfig('project', ProjectName) returns a structure
representing the configuration for the IBM Rational DOORS Next Generation Project specified by
ProjectName and switches the MATLAB session to ProjectName.

configs = slreq.dngGetProjectConfig('type', 'stream') returns a structure
representing the known streams for the current IBM Rational DOORS Next Generation Project.

configs = slreq.dngGetProjectConfig('type', 'changeset') returns a structure
representing the known changesets for the current IBM Rational DOORS Next Generation Project.

configs = slreq.dngGetProjectConfig('name', ConfigName) returns a structure
representing the configuration for the stream or changeset specified by ConfigName.

configs = slreq.dngGetProjectConfig('id', ConfigID) returns a structure representing
the configuration for the stream or changeset specified by ConfigID.

Input Arguments
ProjectName — Requirements project
character vector | string

IBM Rational DOORS Next Generation Project.

ConfigName — Stream or changeset name
character vector | string

The name of the IBM Rational DOORS Next Generation Project stream or changeset specified as a
character vector or as a string.

ConfigID — Stream or changeset ID
character vector | string

1 Functions

1-14

The ID of the IBM Rational DOORS Next Generation Project stream or changeset specified as a
character vector or as a string.

Output Arguments
configs — Server configurations
structure | array of structures

IBM Rational DOORS Next Generation Project configuration, returned as a structure or an array of
structures containing these fields.

id — Configuration ID
character vector

IBM Rational DOORS Next Generation Project configuration ID, returned as a character vector.

name — Configuration name
character vector

IBM Rational DOORS Next Generation Project configuration name, returned as a character vector.

type — Configuration type
character vector

IBM Rational DOORS Next Generation Project configuration type, returned as a character vector.

url — Configuration URL
character vector

IBM Rational DOORS Next Generation Project configuration Uniform Resource Locator (URL),
returned as a character vector.

See Also

Introduced in R2018b

 slreq.dngGetProjectConfig

1-15

slreq.dngGetUsedConfig
Query used IBM Rational DOORS Next Generation configurations from MATLAB/Simulink artifacts

Syntax
configs = slreq.dngGetUsedConfig()
configs = slreq.dngGetUsedConfig(sourceArtifact)

Description
configs = slreq.dngGetUsedConfig() returns all IBM Rational DOORS Next Generation
configurations linked from loaded Simulink artifacts.

configs = slreq.dngGetUsedConfig(sourceArtifact) returns all IBM Rational DOORS Next
Generation configurations linked from a given Simulink source, sourceArtifact.

Input Arguments
sourceArtifact — Link source artifact name
slreq.LinkSet object | character vector | string

The Simulink link source artifact, specified as a character vector or a string or as an slreq.LinkSet
object.

Output Arguments
configs — Server configurations
array of structures

IBM Rational DOORS Next Generation Project configuration, returned as an array of structures
containing these fields.

id — Configuration ID
character vector

IBM Rational DOORS Next Generation Project configuration ID, returned as a character vector.

name — Configuration name
character vector

IBM Rational DOORS Next Generation Project configuration name, returned as a character vector.

type — Configuration type
character vector

IBM Rational DOORS Next Generation Project configuration type, returned as a character vector.

url — Configuration URL
character vector

1 Functions

1-16

IBM Rational DOORS Next Generation Project configuration Uniform Resource Locator (URL),
returned as a character vector.

See Also

Introduced in R2018b

 slreq.dngGetUsedConfig

1-17

slreq.dngUpdateConfig
Update links to IBM Rational DOORS Next Generation configuration

Syntax
count = slreq.dngUpdateConfig(sourceArtifact, oldConfig, newConfig)

Description
count = slreq.dngUpdateConfig(sourceArtifact, oldConfig, newConfig) updates the
links to oldConfig originating from sourceArtifact to point to the same requirements in IBM
Rational DOORS Next Generation under a different configuration, newConfig.

Input Arguments
sourceArtifact — Link source artifact name
slreq.LinkSet object | character vector | string

The Simulink link source artifact, specified as a character vector or a string or as an slreq.LinkSet
object.

oldConfig — Stored project configuration name or ID
character vector

The original IBM Rational DOORS Next Generation Project configuration name or ID, specified as a
character vector.

newConfig — New project configuration name or ID
character vector

The new IBM Rational DOORS Next Generation Project configuration name or ID, specified as a
character vector.

Output Arguments
count — Link count
double

The total number of updated links from sourceArtifact to the IBM Rational DOORS Next
Generation Project, returned as a double.

See Also

Introduced in R2018a

1 Functions

1-18

slreq.editor
Open Requirements Editor

Syntax
slreq.editor

Description
slreq.editor opens the Requirements Editor user interface (UI) dialog box.

See Also
slreq.ReqSet

Introduced in R2018a

 slreq.editor

1-19

slreq.exportViewSettings
Export view settings

Syntax
slreq.exportViewSettings(viewSettingsFile)

Description
slreq.exportViewSettings(viewSettingsFile) exports Simulink Requirements™ view
settings to a MAT-file, viewSettingsFile.

Input Arguments
viewSettingsFile — View settings file
character vector

Simulink Requirements view settings file name, specified as a character vector.

See Also
slreq.importViewSettings | slreq.resetViewSettings

Introduced in R2018b

1 Functions

1-20

slreq.find
Find requirement, reference, and link set artifacts

Syntax
myArtifacts = slreq.find('Type',ArtifactType)
myArtifact = slreq.find('Type',ArtifactType,'PropertyName','PropertyValue')
myReqs = slreq.find('Type',ArtifactType,'ReqType',ReqTypeValue)
myLinks = slreq.find('Type',ArtifactType,'LinkType',LinkTypeValue)

Description
myArtifacts = slreq.find('Type',ArtifactType) finds and returns all loaded Simulink
Requirements artifacts myArtifacts of the type specified by ArtifactType.

myArtifact = slreq.find('Type',ArtifactType,'PropertyName','PropertyValue')
finds and returns a Simulink Requirements artifact myArtifact of the type specified by
ArtifactType matching the additional properties specified by PropertyName and
PropertyValue.

myReqs = slreq.find('Type',ArtifactType,'ReqType',ReqTypeValue) finds and returns
all requirements myReqs of the type specified by ReqTypeValue.

myLinks = slreq.find('Type',ArtifactType,'LinkType',LinkTypeValue) finds and
returns allrequirements myLinks of the type specified by LinkTypeValue.

Examples
Find Requirement Sets

% Find all requirement sets

allReqSets = slreq.find('Type', 'ReqSet')

allReqSets =

 1×8 ReqSet array with properties:

 Description
 Name
 Filename
 Revision
 Dirty
 CustomAttributeNames

% Find a requirement set with matching property values
myReqSet = slreq.find('Type', 'ReqSet', 'Name', 'My_Req_Set', 'Revision', 65)

myReqSet =

 ReqSet with properties:

 slreq.find

1-21

 Description: ''
 Name: 'My_Req_Set'
 Filename: 'C:\MATLAB\My_Req_Set.slreqx'
 Revision: 65
 Dirty: 0
 CustomAttributeNames: {}

Find Requirements

% Find all requirements in all loaded requirement sets
allReqs = slreq.find('Type', 'Requirement')

allReqs =

 1×72 Requirement array with properties:

 Id
 Summary
 Keywords
 Description
 Rationale
 SID
 CreatedBy
 CreatedOn
 ModifiedBy
 ModifiedOn
 FileRevision
 Dirty
 Comments

% Find a requirement with matching property value
myReq = slreq.find('Type', 'Requirement', 'Id', '#19')

myReq =

 Requirement with properties:

 Id: '#19'
 Summary: 'Control Mode'
 Keywords: [0×0 char]
 Description: ''
 Rationale: ''
 SID: 19
 CreatedBy: 'Jane Doe'
 CreatedOn: 27-Feb-2017 10:15:38
 ModifiedBy: 'John Doe'
 ModifiedOn: 02-Aug-2017 15:18:55
 FileRevision: 52
 Dirty: 0
 Comments: [0×0 struct]

Find Referenced Requirements

% Find all referenced requirements in all loaded requirement sets
allRefs = slreq.find('Type', 'Reference')

allRefs =

1 Functions

1-22

 1×24 Reference array with properties:

 Keywords
 Artifact
 Id
 Summary
 Description
 SID
 Domain
 SynchronizedOn
 ModifiedOn

% Find a referenced requirement with matching property value
myRef = slreq.find('Type', 'Reference', 'Id', '#26')

myRef =

 Reference with properties:

 Keywords: [0×0 char]
 Artifact: 'My_req_doc.docx'
 Id: '#26'
 Summary: 'Overview'
 Description: ''
 SID: 2
 Domain: 'linktype_rmi_word'
 SynchronizedOn: 25-Jul-2017 11:34:02
 ModifiedOn: 16-Aug-2017 13:01:55

Find Link Sets

% Find all loaded link sets

allLinkSets = slreq.find('Type', 'LinkSet')

allLinkSets =

 1×2 LinkSet array with properties:

 Description
 Filename
 Artifact
 Domain
 Revision
 Dirty

% Find a link set with matching property values
myLinkSet = slreq.find('Type', 'LinkSet', 'Domain', 'linktype_rmi_slreq')

myLinkSet =

 LinkSet with properties:

 Description: ''
 Filename: 'C:\MATLAB\My_Reqs.slmx'
 Artifact: 'C:\MATLAB\My_Reqs.slreqx'
 Domain: 'linktype_rmi_slreq'

 slreq.find

1-23

 Revision: 2
 Dirty: 0

Find Requirements and Links by Type

% Find all Functional requirements
myFunctionalReqs = slreq.find('Type', 'Requirement', 'ReqType', 'Functional')

myFunctionalReqs =

 1×70 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Find all Links of type Implement
myImplementLinks = slreq.find('Type', 'Link', 'LinkType', 'Implement')

myImplementLinks =

 1×95 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 Comments

Input Arguments
ArtifactType — Simulink Requirements artifact type
'ReqSet' | 'Requirement' | 'Reference' | 'LinkSet'

The Simulink Requirements artifact to find.

ReqTypeValue — Requirement type
character vector

Requirement type. For more information, see “Requirement Types”.

1 Functions

1-24

LinkTypeValue — Link type
character vector

Link type. For more information, see “Link Types”.

Output Arguments
myArtifacts — Simulink Requirements artifact array
slreq.ReqSet array | slreq.Requirement array | slreq.Reference array | slreq.LinkSet
array

Simulink Requirements artifacts, returned as arrays of the respective data type.

myArtifact — Simulink Requirements artifact
slreq.ReqSet | slreq.Requirement | slreq.Reference | slreq.LinkSet

Simulink Requirements artifact, returned as the respective data type.

myReqs — Requirement objects
slreq.Requirement object | array of slreq.Requirement objects

Requirement objects matching the requirement type specified by ReqTypeValue, returned as an
slreq.Requirement object or as an array of slreq.Requirement objects.

myLinks — Link objects
slreq.Link object | array of slreq.Link objects

Link objects matching the link type specified by LinkTypeValue, returned as an slreq.Link object
or as an array of slreq.Link objects.

See Also
find | find | find | find | slreq.Justification | slreq.LinkSet | slreq.Reference |
slreq.ReqSet | slreq.Requirement

Introduced in R2018a

 slreq.find

1-25

slreq.generateReport
Generate report for requirements set

Syntax
myReportPath = slreq.generateReport(reqSetList, reportOpts)

Description
myReportPath = slreq.generateReport(reqSetList, reportOpts) generates a report for
the requirements sets specified by reqSetList using the options specified by reportOpts and
returns the path myReportPath to the report.

Examples
Generate Requirement Report

% Generate a requirement report in Microsoft(R) Word
% format for all loaded requirements sets

% Get default report generation options structure
myReportOpts = slreq.getReportOptions();

% Specify the generated report path and file name
myReportOpts.reportPath = 'L:\My_Project\Reqs_Report.docx';

% Generate the report for all loaded requirements sets
myReport = slreq.generateReport('all', myReportOpts);

Note To generate reports in PDF and HTML formats, specify a .pdf or a .html file name as the
reportPath value.

Input Arguments
reqSetList — Requirements set
character vector (default) | slreq.ReqSet object | array

Requirements sets for report generation. You can specify a single requirements set or an array of
requirements sets. To generate a report for all the loaded requirements sets, specify 'all' as the
reqSetList value. If you do not specify a value for reqSetList, 'all' is used as default.

reportOpts — Report generation options
structure

Report generation options specified as a MATLAB structure. If reportOpts is not specified, the
report is generated using the default options specified in slreq.getReportOptions.

1 Functions

1-26

Options

Fields Data Type Description
reportPath character vector Generated report path.
titleText character vector Report title.
authors character vector Report authors.
includes.toc Boolean Option to include table of

contents in your report.
includes.links Boolean Option to include requirements

links in your report.
includes.rationale Boolean Option to include requirements

rationale in your report.
includes.customAttribute
s

Boolean Option to include requirements
set custom attributes in your
report

includes.comments Boolean Option to include requirement
comments in your report.

includes.implementationS
tatus

Boolean Option to include requirement
implementation status data in
your report.

includes.verificationSta
tus

Boolean Option to include requirement
verification status data in your
report.

includes.keywords Boolean Option to include requirement
implementation status data in
your report.

includes.emptySections Boolean Option to include empty
sections in your report.

includes.revision Boolean Option to include requirement
revision information in your
report.

Output Arguments
myReportPath — Generated report path
character vector

The file path for the generated report, specified as a character vector.

See Also
slreq.getReportOptions

Topics
“Report Requirements Information”

Introduced in R2018a

 slreq.generateReport

1-27

slreq.generateTraceabilityMatrix
Create traceability matrix

Syntax
slreq.generateTraceabilityMatrix
slreq.generateTraceabilityMatrix(opts)

Description
slreq.generateTraceabilityMatrix opens the Traceability Matrix window.

slreq.generateTraceabilityMatrix(opts) creates a traceability matrix with the artifacts
specified by opts.

Examples

Open the Traceability Matrix Window

Open the Traceability Matrix window.

slreq.generateTraceabilityMatrix

Close the Traceability Matrix window.

slreq.clear;

Programmatically Generate a Traceability Matrix

This example shows how to create an options structure for a traceability matrix, then generate a
matrix using those options.

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Create an options structure for a traceability matrix.

opts = slreq.getTraceabilityMatrixOptions;

Set the leftArtifacts and topArtifacts fields of opts. Enter a cell array containing the name
of the artifacts that you want to use in your traceabilty matrix.

opts.leftArtifacts = {'crs_req.slreqx','crs_req_func_spec.slreqx'};
opts.topArtifacts = {'crs_plant.slx', 'crs_controller.slx','DriverSwRequest_Tests.mldatx'};

Generate the traceability matrix with the artifacts specified by opts.

slreq.generateTraceabilityMatrix(opts)

1 Functions

1-28

Cleanup

Clear the open requirement sets and link sets, and close the Traceability Matrix window. Close the
Requirements Definition for a Cruise Control Model project.

slreq.clear;
slproject.closeCurrentProject();

Input Arguments
opts — Traceability matrix options
struct

Traceability matrix options, specified as a struct with these fields:

• leftArtifacts
• topArtifacts

See Also
slreq.getTraceabilityMatrixOptions

Topics
“Track Requirement Links with a Traceability Matrix”

Introduced in R2021a

 slreq.generateTraceabilityMatrix

1-29

slreq.getCurrentObject
Selected objects in Requirements Editor or Requirements Browser

Syntax
myReqObj = slreq.getCurrentObject

Description
myReqObj = slreq.getCurrentObject returns the currently selected item or items in the
Requirements Editor or Requirements Browser.

Note If you select an item in both the Requirements Editor and the Requirements Browser, the
function returns the most recently selected item.

Examples

Get API Object for Selection in Requirements Editor

This example shows how to get the object for the most recently selected item or items in the
Requirements Editor or the Requirements Browser.

Open the “Requirements Definition for a Cruise Control Model” project. Load the
crs_req_func_spec requirement set and open it in the Requirements Editor.

slreqCCProjectStart;
slreq.open('crs_req_func_spec');

In the Requirements Editor, select requirement #1: Driver Switch Request Handling. Get the
object for the selected requirement, then inspect the incoming links.

myReqObj = slreq.getCurrentObject;
lk = slreq.inLinks(myReqObj)

lk =
 Link with properties:

 Type: 'Implement'
 Description: '#1: Driver Switch Request Handling'
 Keywords: {}
 Rationale: ''
 CreatedOn: 20-May-2017 11:19:44
 CreatedBy: 'itoy'
 ModifiedOn: 17-Aug-2017 14:41:16
 ModifiedBy: 'itoy'
 Revision: 1
 SID: 1
 Comments: [0×0 struct]

1 Functions

1-30

Cleanup

Clear the open requirement sets and link sets, and close the Requirements Editor.

slreq.clear;

Output Arguments
myReqObj — Simulink Requirements object
slreq.ReqSet object | slreq.Requirement object | slreq.Reference object |
slreq.Justification object | slreq.LinkSet object | slreq.Link object

Simulink Requirements object, returned as a:

• slreq.ReqSet object
• slreq.Requirement object
• slreq.Reference object
• slreq.Justification object
• slreq.LinkSet object
• slreq.Link object

See Also
slreq.editor | slreq.getExternalURL

Introduced in R2021a

 slreq.getCurrentObject

1-31

slreq.getExternalURL
Get navigation URL for link source or destination, requirement, test or Simulink model element

Syntax
navURL = slreq.getExternalURL(myDesignItem)
[navURL,navLabel] = slreq.getExternalURL(myDesignItem)

Description
navURL = slreq.getExternalURL(myDesignItem) returns a navigation URL to a link source or
destination, requirement, test or Simulink model element specified by myDesignItem.

Note The MATLAB embedded web server must run on HTTP port 31415 to create the navigation
URLs. If your MATLAB session is not configured for this HTTP port number, an error occurs when you
try to create a link. Use connector.port to check the configured port number. If connector.port
returns 0, use rmipref('UnsecureHttpRequests',true) to enable the embedded HTTP server.
If connector.port returns a number that is not 31415, close all instances of MATLAB and reopen
one instance.

[navURL,navLabel] = slreq.getExternalURL(myDesignItem) also returns an external
navigation label, navLabel.

Examples

Get a Navigation URL for a Link Source or Destination

Open the “Requirements Definition for a Cruise Control Model” project. Load the crs_req
requirement set.

slreqCCProjectStart;
slreq.load('crs_req');

Find the crs_req link set. Find the link with description #9: Enable Switch Detection.

myLinkSet = slreq.find('Type','LinkSet','Name','crs_req');
myLink = find(myLinkSet,'Description','#9: Enable Switch Detection')

myLink =
 Link with properties:

 Type: 'Derive'
 Description: '#9: Enable Switch Detection'
 Keywords: {}
 Rationale: ''
 CreatedOn: 20-May-2017 13:14:10
 CreatedBy: 'itoy'
 ModifiedOn: 02-Feb-2018 14:28:04

1 Functions

1-32

 ModifiedBy: 'itoy'
 Revision: 4
 SID: 1
 Comments: [0×0 struct]

Get a navigation URL to the link source.

navURL1 = slreq.getExternalURL(myLink.source)

navURL1 =
'http://localhost:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req.slreqx%22,%2210%22,%22%22]'

Get a navigation URL to the link destination.

navURL2 = slreq.getExternalURL(myLink.destination)

navURL2 =
'http://localhost:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req_func_spec.slreqx%22,%229%22,%22%22]'

Cleanup

Clear the loaded requirement sets and link sets.

slreq.clear;

Get a Navigation URL for a Requirement Object

Open the “Requirements Definition for a Cruise Control Model” project. Load the
crs_req_func_spec requirement set and open it in the Requirements Editor.

slreqCCProjectStart;
rs = slreq.open('crs_req_func_spec');

In the Requirements Editor, in the crs_req_func_spec requirement set, select the requirement
with ID #1. Get an API object for the requirement using slreq.getCurrentObject. Then get an
external navigation URL for the requirement and a label for the URL.

req = slreq.getCurrentObject

req =
 Requirement with properties:

 Type: 'Functional'
 Id: '#1'
 Summary: 'Driver Switch Request Handling'
 Description: '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">↵<html><head><meta name="qrichtext" content="1" /><style type="text/css">↵p, li { white-space: pre-wrap; }↵</style></head><body style=" font-family:'MS Shell Dlg 2'; font-size:10pt; font-weight:400; font-style:normal;">↵<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Handle switch operations by the driver to determine the command for the cruise control system to operate upon.</p>↵<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px; font-family:'Sans Serif';">
</p></body></html>'
 Keywords: {}
 Rationale: ''
 CreatedOn: 27-Feb-2017 10:15:38
 CreatedBy: 'itoy'
 ModifiedBy: 'asriram'
 SID: 1
 FileRevision: 46
 ModifiedOn: 02-Aug-2017 13:49:40
 Dirty: 0

 slreq.getExternalURL

1-33

 Comments: [0×0 struct]
 Index: '1'

[navURL1,navLabel1] = slreq.getExternalURL(req)

navURL1 =
'http://localhost:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req_func_spec.slreqx%22,%221%22,%22%22]'

navLabel1 =
'Driver Switch Request Handling'

Find a justification in the requirement set with ID #72. Get an external URL navigation URL for the
justification and a label for the URL.

jt = find(rs,'Type','Justification','ID','#72')

jt =
 Justification with properties:

 Id: '#72'
 Summary: 'Non-functional requirement'
 Description: '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">↵<html><head><meta name="qrichtext" content="1" /><style type="text/css">↵p, li { white-space: pre-wrap; }↵</style></head><body style=" font-family:'Helvetica'; font-size:8pt; font-weight:400; font-style:normal;">↵<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">A non-functional requirement that cannot be associated with a model element.</p></body></html>'
 Keywords: {}
 Rationale: ''
 CreatedOn: 27-Feb-2017 10:34:22
 CreatedBy: 'itoy'
 ModifiedBy: 'asriram'
 SID: 72
 FileRevision: 1
 ModifiedOn: 03-Aug-2017 17:14:44
 Dirty: 0
 Comments: [0×0 struct]
 Index: '5.1'

[navURL2,navLabel2] = slreq.getExternalURL(jt)

navURL2 =
'http://localhost:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req_func_spec.slreqx%22,%2272%22,%22%22]'

navLabel2 =
'Non-functional requirement'

Find all loaded referenced requirements. Get an external navigation URL for the third referenced
requirement and a label for the URL.

refs = slreq.find('Type','Reference');
ref = refs(3)

ref =
 Reference with properties:

 Id: 'System overview'
 CustomId: 'System overview'
 Artifact: 'crs_req.docx'
 ArtifactId: '?System overview'
 Domain: 'linktype_rmi_word'
 UpdatedOn: 02-Feb-2018 13:23:13

1 Functions

1-34

 CreatedOn: NaT
 CreatedBy: ''
 ModifiedBy: ''
 IsLocked: 1
 Summary: 'System overview'
 Description: '<div class=WordSection1>↵↵<div style='border:none;border-bottom:solid #595959 1.0pt;padding:0in 0in 1.0pt 0in'>↵↵<h1 style='margin-left:0in;text-indent:0in'>System overview</h1>↵↵</div>↵↵</div>'
 Rationale: ''
 Keywords: {}
 Type: 'Functional'
 SID: 3
 FileRevision: 1
 ModifiedOn: 03-Aug-2017 17:34:56
 Dirty: 0
 Comments: [0×0 struct]
 Index: '2'

[navURL3,navLabel3] = slreq.getExternalURL(ref)

navURL3 =
'http://localhost:31415/matlab/feval/rmi.navigate?arguments=[%22linktype_rmi_slreq%22,%22crs_req.slreqx%22,%223%22,%22%22]'

navLabel3 =
'System overview'

Cleanup

Clear the loaded requirement sets and link sets. Close the Requirements Editor.

slreq.clear;

Get a Navigation URL for a Model Element

Open the “Requirements Definition for a Cruise Control Model” project. Open the crs_plant model.

slreqCCProjectStart;
open_system('crs_plant');

Select the Transmission subsystem and use gcb or gcbh to get a path or handle to the subsystem.
Then get an external navigation URL to the subsystem and a label for the URL.

subsys = gcb

subsys =
'crs_plant/Transmission'

[navURL1,navLabel1] = slreq.getExternalURL(subsys)

navURL1 =
'http://localhost:31415/matlab/feval/rmiobjnavigate?arguments=[%22crs_plant.slx%22,%22:414%22]'

navLabel1 =
'Transmission'

Look inside the shift_logic mask by clicking the icon. Select the first Stateflow® state and
use sfgco to get a handle to the state. Then get an external navigation URL to the state and a label
for the URL.

 slreq.getExternalURL

1-35

firstState = sfgco

firstState =

 Path: 'crs_plant/shift_logic/gear_state'
 Id: 462
 Machine: [1×1 Stateflow.Machine]
 SSIdNumber: 6
 Name: 'first'
 Description: ''
 LabelString: 'first↵'
 FontSize: 10
 ArrowSize: 9.2240
 TestPoint: 0
 Chart: [1×1 Stateflow.Chart]
 BadIntersection: 0
 Subviewer: [1×1 Stateflow.Chart]
 Document: ''
 Tag: []
 RequirementInfo: ''
 ExecutionOrder: 0
 ContentPreviewEnabled: 0
 Position: [1×4 double]
 Decomposition: 'EXCLUSIVE_OR'
 Type: 'OR'
 IsSubchart: 0
 IsGrouped: 0
 Debug: [1×1 Stateflow.StateDebug]
 InlineOption: 'Auto'
 LoggingInfo: [1×1 Stateflow.SigLoggingInfo]
 HasOutputData: 0
 OutputData: []
 OutputMonitoringMode: 'SelfActivity'
 IsExplicitlyCommented: 0
 IsImplicitlyCommented: 0
 CommentText: ''

[navURL2,navLabel2] = slreq.getExternalURL(firstState)

navURL2 =
'http://localhost:31415/matlab/feval/rmiobjnavigate?arguments=[%22crs_plant.slx%22,%22:413:6%22]'

navLabel2 =
'first'

Cleanup

Clear the loaded requirement sets and link sets. Close all open models.

slreq.clear;
bdclose('all');

Get a Navigation URL for a Simulink Test Case

Open the “Requirements Definition for a Cruise Control Model” project. Load the
DriverSwRequest_Tests test file.

1 Functions

1-36

slreqCCProjectStart;
tf = sltest.testmanager.load('DriverSwRequest_Tests.mldatx');

Get the test suite in the test file.

suite = getTestSuites(tf);

Get the test cases in the test suite. Get an external navigation URL for the first test case and get a
label for the navigation URL.

cases = getTestCases(suite)

cases=1×8 object
 1×8 TestCase array with properties:

 Name
 TestFile
 TestPath
 TestType
 RunOnTarget
 Parent
 Requirements
 Description
 Enabled
 ReasonForDisabling
 Tags

case1 = cases(1)

case1 =
 TestCase with properties:

 Name: 'Enable button'
 TestFile: [1×1 sltest.testmanager.TestFile]
 TestPath: 'DriverSwRequest_Tests > Unit test for DriverSwRequest > Enable button'
 TestType: 'simulation'
 RunOnTarget: {[0]}
 Parent: [1×1 sltest.testmanager.TestSuite]
 Requirements: [1×1 struct]
 Description: ''
 Enabled: 1
 Tags: [0×0 string]

[navURL,navLabel] = slreq.getExternalURL(case1)

navURL =
'http://localhost:31415/matlab/feval/rmitmnavigate?arguments=[%22DriverSwRequest_Tests.mldatx%22,%223b7651c7-826b-431c-928b-f1f80a674351%22]'

navLabel =
'Enable button'

Cleanup

Clear the loaded requirement sets and link sets. Clear the loaded test files.

slreq.clear;
sltest.testmanager.clear;

 slreq.getExternalURL

1-37

Input Arguments
myDesignItem — Link source or destination, requirement, test, or model element
slreq.link source or destination structure | Simulink Requirements object | path or handle to
model element | Simulink Test™ object

Item in MATLAB or Simulink, specified as:

• slreq.Link source or destination structure
• Simulink Requirements object:

• slreq.Requirement
• slreq.Reference
• slreq.Justification

• Path or handle to:

• Simulink system or block
• Stateflow chart, subchart, state, or transition
• System Composer™ model or component

• Simulink Test object:

• sltest.testmanager.TestFile
• sltest.testmanager.TestSuite
• sltest.testmanager.TestCase
• sltest.testmanager.TestIteration

Output Arguments
navURL — External navigation URL
character array

External navigation URL, returned as a character array.

navLabel — External navigation URL label
character array

External navigation URL label, returned as a character array.

Tips
• You can copy the external navigation URL to your clipboard for a:

• Simulink Requirements requirement, referenced requirement, or justification
• Simulink, Stateflow, or System Composer model element
• Simulink data dictionary entry

Right-click one of these items in the Requirements Editor or Simulink Editor and select Copy URL
to Clipboard, or select Requirements > Copy URL to Clipboard.

1 Functions

1-38

See Also
gcb | gcbh | sfgco | slreq.getCurrentObject | sltest.testmanager.getTestFiles

Introduced in R2021a

 slreq.getExternalURL

1-39

slreq.getReportOptions
Get default report generation options

Syntax
myOptions = slreq.getReportOptions()

Description
myOptions = slreq.getReportOptions() returns a structure with the default options for
generating reports for requirements sets.

Examples
Get Report Generation Options

myOptions = slreq.getReportOptions()

myOptions =

 struct with fields:

 reportPath: 'L:\slreqrpt_20170826.docx'
 openReport: 1
 titleText: ''
 authors: 'Jane Doe'
 includes: [1×1 struct]

Output Arguments
myOptions — Report generation options
structure

Options for report generation, returned as a structure with the following fields:

1 Functions

1-40

Options

Fields Data Type Description
reportPath character vector Report file path
openReport Boolean Option to open report

automatically after generation
titleText character vector Report title
authors character vector Report authors
includes.toc Boolean Option to include table of

contents in your report
includes.publishedDate Boolean Option to include the report

publish date
includes.revision Boolean Option to include requirement

revision information in your
report

includes.properties Boolean Option to include requirement
properties

includes.links Boolean Option to include requirements
links in your report

includes.changeInformati
on

Boolean Option to include change
information such as change
issues

includes.groupLinksBy character vector Option to group links by
Artifact or LinkType

includes.keywords Boolean Option to include requirement
implementation status data in
your report

includes.comments Boolean Option to include requirement
comments in your report

includes.implementationS
tatus

Boolean Option to include requirement
implementation status data in
your report

includes.verificationSta
tus

Boolean Option to include requirement
verification status data in your
report

includes.emptySections Boolean Option to include empty
sections in your report

includes.rationale Boolean Option to include requirements
rationale in your report

includes.customAttribute
s

Boolean Option to include requirements
set custom attributes in your
report

See Also
slreq.generateReport

 slreq.getReportOptions

1-41

Introduced in R2018a

1 Functions

1-42

slreq.getTraceabilityMatrixOptions
Create options structure for traceability matrix

Syntax
opts = slreq.getTraceabilityMatrixOptions
opts = slreq.getTraceabilityMatrixOptions('current')

Description
opts = slreq.getTraceabilityMatrixOptions creates an empty traceability matrix options
structure.

opts = slreq.getTraceabilityMatrixOptions('current') creates a traceability matrix
options structure containing the artifacts from the selected tab in the Traceability Matrix window.

Examples

Programmatically Generate a Traceability Matrix

This example shows how to create an options structure for a traceability matrix, then generate a
matrix using those options.

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Create an options structure for a traceability matrix.

opts = slreq.getTraceabilityMatrixOptions;

Set the leftArtifacts and topArtifacts fields of opts. Enter a cell array containing the name
of the artifacts that you want to use in your traceabilty matrix.

opts.leftArtifacts = {'crs_req.slreqx','crs_req_func_spec.slreqx'};
opts.topArtifacts = {'crs_plant.slx', 'crs_controller.slx','DriverSwRequest_Tests.mldatx'};

Generate the traceability matrix with the artifacts specified by opts.

slreq.generateTraceabilityMatrix(opts)

Cleanup

Clear the open requirement sets and link sets, and close the Traceability Matrix window. Close the
Requirements Definition for a Cruise Control Model project.

slreq.clear;
slproject.closeCurrentProject();

 slreq.getTraceabilityMatrixOptions

1-43

Get Artifacts from the Selected Traceability Matrix

This example shows how to get the artifacts from the selected tab in the Traceability Matrix window,
then re-generate the matrix.

Setup

Open the Requirements Definition for a Cruise Control Model project.

slreqCCProjectStart;

Load the crs_controller model, then open the Traceability Matrix window.

load_system('crs_controller');
slreq.generateTraceabilityMatrix;

Create the Traceability Matrix

1 In the Traceability Matrix window, in the Select Artifacts dialog, set Left to
crs_req_func.slreqx and Top to crs_controller.slx.

2 Click Generate Matrix.

Get Artifacts from the Traceability Matrix

Without closing the Traceability Matrix window, get the artifacts that were used to generate the
matrix.

opts = slreq.getTraceabilityMatrixOptions('current')

opts = struct with fields:
 leftArtifacts: {'C:\Users\jdoe\MATLAB\Projects\examples\CruiseRequirementsExample\documents\crs_req_func_spec.slreqx'}
 topArtifacts: {'C:\Users\jdoe\MATLAB\Projects\examples\CruiseRequirementsExample\models\crs_controller.slx'}

Close the Traceability Matrix window. Re-generate the matrix with the artifacts specified by opts.

slreq.generateTraceabilityMatrix(opts)

Cleanup

Clear the open requirement sets and link sets, and close the Traceability Matrix window.

slreq.clear;

Output Arguments
opts — Traceability matrix options
struct

Traceability matrix options, specified as a struct with these fields:

• leftArtifacts
• topArtifacts

See Also
slreq.generateTraceabilityMatrix

1 Functions

1-44

Topics
“Track Requirement Links with a Traceability Matrix”

Introduced in R2021a

 slreq.getTraceabilityMatrixOptions

1-45

slreq.import
Import requirements from external documents

Syntax
slreq.import(docPath)
[refCount, reqSetFilePath, reqSetObj] = slreq.import(docPath)
slreq.import(docType)
slreq.import(docPath,Name,Value)
slreq.import(reqifFile)
slreq.import(reqifFile, 'mappingFile', mapFilePath)
slreq.import('clearcache')

Description
slreq.import(docPath) imports requirements content as referenced requirements from an
external document located at docPath. The imported requirements are saved in a new requirements
set with the same name as the external document. Use this import method to import requirements
content from Microsoft® Office documents and from files in the Requirements Interchange Format
(.reqif and .reqifz).

[refCount, reqSetFilePath, reqSetObj] = slreq.import(docPath) imports
requirements content as referenced requirements from an external document located at docPath
and returns the number of references imported refCount. The imported requirements are saved in
the requirements set reqSetObj located at reqSetFilePath with the same name as the external
document.

slreq.import(docType) imports requirements content as referenced requirements from an
external document that is of a registered document type docType. The imported requirements are
saved in a new requirements set with the same name as the external document.

slreq.import(docPath,Name,Value) imports requirements content as referenced requirements
from an external document located at docPath with options specified by one or more Name, Value
pair arguments.

slreq.import(reqifFile) imports requirement content from the ReqIF file reqifFile using a
pre-configured attribute mapping.

slreq.import(reqifFile, 'mappingFile', mapFilePath) imports requirement content from
the ReqIF file reqifFile using the attribute mapping specified by mapFilePath.

slreq.import('clearcache') cleans up temporary HTML files that are created when importing
rich text requirements.

Examples
Import Referenced Requirements

% Import referenced requirements from Microsoft Office documents
slreq.import('Specification002.docx');

1 Functions

1-46

slreq.import('D:/Projects/Requirements/Safety321.xlsx');

% Import referenced requirements from an IBM Rational DOORS Module
slreq.import('linktype_rmi_doors');

For more information on importing referenced requirements from third-party applications, see
“Import Requirements from Third-Party Applications”.

Input Arguments
docPath — Document location
character vector

The file path of the external requirements document, specified as a character vector.

docType — Document type
character vector

The document type of the external requirements document, specified as a character vector.
Example: 'linktype_rmi_doors'

reqifFile — ReqIF file location
character vector

The file path of the ReqIF file, specified as a character vector.

mapFilePath — Attribute mapping file location
character vector

The file path of the attribute mapping file, specified as a character vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ReqSet','design_specs.slreqx'

AsReference — Option to import as references
true (default) | false

Option to import requirements as references, specified as a Boolean value. The value false is
supported only for import from Microsoft Office documents.

ReqSet — Requirements Set
character vector

The name for the existing requirements set that you import requirements into, specified as a
character vector.
Example: 'ReqSet', 'My_Requirements_Set'

RichText — Option to import rich text requirements
false (default) | true

 slreq.import

1-47

Option to import requirements as rich text, specified as a Boolean value.
Example: 'RichText', true

bookmarks — Option to import requirements using bookmarks
false | true

Option to import requirements content using user-defined bookmarks. This value is true by default
for Microsoft Word documents and false by default for Microsoft Excel® spreadsheets.
Example: 'bookmarks', false

match — Regular expression pattern
character vector

Regular expression pattern for ID search in Microsoft Office documents.
Example: 'match', '^REQ\d+'

attributes — Attribute names
cell array

Attribute names to import, specified as a cell array.

Note When importing requirements from a Microsoft Excel spreadsheet, the length of this cell array
must match the number of columns specified for import using the 'columns' argument.

Example: 'attributes', {'Test Status', 'Test Procedure'}

columns — Range of columns
double array

Range of columns to import from Microsoft Excel spreadsheet, specified as a double array.
Example: 'columns', [1 6]

rows — Range of rows
double array

Range of rows to import from Microsoft Excel spreadsheet, specified as a double array.
Example: 'rows', [3 35]

idColumn — ID Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the ID field in your
requirement set, specified as a double.
Example: 'idColumn', 1

summaryColumn — Summary Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Summary field in your
requirement set, specified as a double.

1 Functions

1-48

Example: 'summaryColumn', 4

keywordsColumn — Keywords Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Keywords field in
your requirement set, specified as a double.
Example: 'keywordsColumn', 3

descriptionColumn — Description Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Description field in
your requirement set, specified as a double.
Example: 'descriptionColumn', 2

rationaleColumn — Rationale Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Rationale field in
your requirement set, specified as a double.
Example: 'rationaleColumn', 5

attributeColumn — Custom Attributes Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Custom Attributes
field in your requirement set, specified as a double.
Example: 'attributeColumn', 6

USDM — USDM Format Import Option
character vector

Import from Microsoft Excel spreadsheets specified in the USDM (Universal Specification Describing
Manner) standard format. Specify values as a character vector with the ID prefix optionally followed
by a separator character.
Example: 'RQ -' will match entries with IDs similar to RQ01, RQ01-2, RQ01-2-1 etc.

attr2reqprop — ReqIF™ attribute mapping
containers.Map object

Import from ReqIF format, specifying the attribute mapping as a comma-separated pair consisting of
'attr2reqprop' and a containers.Map object. For example:

attrMap = containers.Map('KeyType','char','ValueType','char')
attrMap('SourceID') = 'Custom ID'; % Built-in attribute
attrMap('ReqIF.ChapterName') = 'Summary'; % Built-in attribute
attrMap('Data Class') = 'MyDataClass'; % Custom attribute

slreq.import('myfile.reqif','attr2reqprop',attrMap);

Example: slreq.import('myfile.reqif', 'attr2reqprop', attrMap);

 slreq.import

1-49

Output Arguments
refCount — Imported referenced requirements count
double

Number of referenced requirements imported, returned as a double.

reqSetFilePath — Requirement set file path
character vector

The file path of the requirement set to which you import requirements to, returned as a character
vector.

reqSetObj — Requirement set object
slreq.ReqSet object

Handle to the requirement set to which you import requirements to, returned as an slreq.ReqSet
object.

See Also
createReferences | slreq.Reference

Introduced in R2018a

1 Functions

1-50

slreq.importViewSettings
Import view settings

Syntax
slreq.importViewSettings(viewSettingsFile)
slreq.importViewSettings(viewSettingsFile, overwriteFlag)

Description
slreq.importViewSettings(viewSettingsFile) imports Simulink Requirements view settings
from a MAT-file, viewSettingsFile.

slreq.importViewSettings(viewSettingsFile, overwriteFlag) imports Simulink
Requirements view settings from a MAT-file, viewSettingsFile, with an optional argument to
overwrite existing view settings, specified by overwriteFlag.

Input Arguments
viewSettingsFile — View settings file
character vector

Simulink Requirements view settings file name, specified as a character vector.

overwriteFlag — Overwrite flag
false (default) | true

Optional flag to specify whether the existing view settings are to be overwritten, specified as a
Boolean.

See Also
slreq.exportViewSettings | slreq.resetViewSettings

Introduced in R2018b

 slreq.importViewSettings

1-51

slreq.load
Load requirements/link set

Syntax
myReqSet = slreq.load(reqSetArtifact)
myLinkSet = slreq.load(linkSetArtifact)

Description
myReqSet = slreq.load(reqSetArtifact) loads a requirements set myReqSet into memory.

myLinkSet = slreq.load(linkSetArtifact) loads a link set myLinkSet into memory.

Input Arguments
reqSetArtifact — Requirements set to load
character vector

The requirements set to load, specified as a character vector.

linkSetArtifact — Link set artifact name
character vector

The link set to load, specified as a character vector.

Output Arguments
myReqSet — Loaded requirements set
slreq.ReqSet object

The requirements set that was loaded, returned as an slreq.ReqSet object.

myLinkSet — Loaded link set
slreq.LinkSet object

The link set that was loaded, returned as an slreq.LinkSet object.

See Also
slreq.LinkSet | slreq.ReqSet

Introduced in R2018a

1 Functions

1-52

slreq.inLinks
Get incoming links for requirement or other linkable item

Syntax
ks = slreq.inLinks(node)

Description
ks = slreq.inLinks(node) returns incoming links ks, a Link or Link array, to nodes, a
Requirement, Reference, or other linkable item.

Examples

Determine Incoming and Outgoing Links

This example shows how to determine the incoming link for a requirement and outgoing link for a
model object. Click the Open Live Script button to get copies of the example files.

Load Model and Requirement Set

load_system('reqs_validation_property_proving_original_model');
rqset = slreq.load('original_thrust_reverser_requirements.slreqx');

Get a Requirement from the Set

req = slreq.find('Type','Requirement','Summary','Maximum Throttle Threshold');

Determine Incoming Links for the Requirement

lkIn = slreq.inLinks(req)

lkIn =
 Link with properties:

 Type: 'Implement'
 Description: 'R11: Maximum Throttle Threshold (original_thrust_reverser_requirements#11)'
 Keywords: {}
 Rationale: ''
 CreatedOn: 25-Mar-2019 16:10:06
 CreatedBy: 'asriram'
 ModifiedOn: 25-Mar-2019 16:10:06
 ModifiedBy: 'asriram'
 Revision: 14
 SID: 52
 Comments: [0x0 struct]

Determine the Incoming Link Source

lkSrc = source(lkIn);

 slreq.inLinks

1-53

Convert Link Source to Model Object

mo = slreq.structToObj(lkSrc);

Determine Outgoing Link from the Model Object

lkOut = slreq.outLinks(mo)

lkOut =
 Link with properties:

 Type: 'Implement'
 Description: 'R11: Maximum Throttle Threshold (original_thrust_reverser_requirements#11)'
 Keywords: {}
 Rationale: ''
 CreatedOn: 25-Mar-2019 16:10:06
 CreatedBy: 'asriram'
 ModifiedOn: 25-Mar-2019 16:10:06
 ModifiedBy: 'asriram'
 Revision: 14
 SID: 52
 Comments: [0x0 struct]

Close Files

slreq.clear;
bdclose all;

Input Arguments
node — Linkable item to get incoming links for
struct

A linkable item that may have incoming requirements links. Common examples include a
Requirement or Reference. Can be the output of find.
Example: Requirement with properties
Data Types: struct

Output Arguments
ks — Link(s) incoming to node
Link or Link array

A Link or Link array incoming to the linkable item.

See Also
slreq.outLinks | slreq.structToObj

Introduced in R2017b

1 Functions

1-54

slreq.new
Create requirements set

Syntax
newReqSet = slreq.new(reqSetName)
newReqSet = slreq.new(reqSetPath)

Description
newReqSet = slreq.new(reqSetName) creates a requirements set newReqSet with the name
specified by reqSetName in the current working folder.

newReqSet = slreq.new(reqSetPath) creates a requirements set newReqSet in the folder
specified by reqSetPath.

Note The folder specified by reqSetPath must exist on disk.

Examples
Create Requirements Set

% Create requirements set in current working folder
myReqSet1 = slreq.new('New_Req_Set_1')

myReqSet1 =

 ReqSet with properties:

 Description: ''
 Name: 'New_Req_Set_1'
 Filename: 'L:\New_Req_Set_1.slreqx'
 Revision: 1
 Dirty: 1
 CustomAttributeNames: {}
 CreatedBy: 'John Doe'
 CreatedOn: 18-Feb-2008 20:54:52
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 20-Jan-2016 12:44:12

% Create requirements set in a different directory
myReqSet2 = slreq.new('L:\Reqs_Work\New_Req_Set_2')

myReqSet2 =

 ReqSet with properties:

 Description: ''
 Name: 'New_Req_Set_2'
 Filename: 'L:\Reqs_Work\New_Req_Set_2.slreqx'

 slreq.new

1-55

 Revision: 1
 Dirty: 1
 CustomAttributeNames: {}
 CreatedBy: 'Jane Doe'
 CreatedOn: 11-Jan-2009 11:33:01
 ModifiedBy: 'John Doe'
 ModifiedOn: 18-Jan-2018 09:07:32

Input Arguments
reqSetName — Requirements set name
character vector

Name of the requirements set to create, specified as a character vector.

reqSetPath — Requirements set path
character vector

Folder to create requirements set in, specified as a character vector.

Output Arguments
newReqSet — Created requirements set
slreq.ReqSet object

The created requirements set, specified as an slreq.ReqSet object.

See Also
slreq.ReqSet

Introduced in R2018a

1 Functions

1-56

slreq.open
Open requirements set

Syntax
myReqSet = slreq.open(ReqSetFilePath)
myReqSet = slreq.open(ReqSetName)

Description
myReqSet = slreq.open(ReqSetFilePath) loads the requirements set at ReqSetFilePath into
memory. If the requirements set is already loaded into memory, the Requirements Editor opens. If the
requirements set is already loaded and the Requirements Editor is open, the specified requirements
set is selected in the Requirements Editor.

myReqSet = slreq.open(ReqSetName) loads the requirements set named ReqSetName if it can
be located.

Input Arguments
ReqSetFilePath — Requirements set file path
character vector

The full file path of the requirements set to be loaded, specified as a character vector.

ReqSetName — Requirements set name
character vector

The name of the requirements set to be loaded, specified as a character vector.

Output Arguments
myReqSet — Requirements set object
slreq.ReqSet object

Handle to the requirements set you open, returned as an slreq.ReqSet object.

See Also
slreq.ReqSet

Introduced in R2018a

 slreq.open

1-57

slreq.outLinks
Get outgoing links for a block or other linkable item

Syntax
ks = slreq.outLinks(node)

Description
ks = slreq.outLinks(node), returns outgoing links ks, a Link or Link array, from node, a
block or other linkable item.

Examples

Determine Incoming and Outgoing Links

This example shows how to determine the incoming link for a requirement and outgoing link for a
model object. Click the Open Live Script button to get copies of the example files.

Load Model and Requirement Set

load_system('reqs_validation_property_proving_original_model');
rqset = slreq.load('original_thrust_reverser_requirements.slreqx');

Get a Requirement from the Set

req = slreq.find('Type','Requirement','Summary','Maximum Throttle Threshold');

Determine Incoming Links for the Requirement

lkIn = slreq.inLinks(req)

lkIn =
 Link with properties:

 Type: 'Implement'
 Description: 'R11: Maximum Throttle Threshold (original_thrust_reverser_requirements#11)'
 Keywords: {}
 Rationale: ''
 CreatedOn: 25-Mar-2019 16:10:06
 CreatedBy: 'asriram'
 ModifiedOn: 25-Mar-2019 16:10:06
 ModifiedBy: 'asriram'
 Revision: 14
 SID: 52
 Comments: [0x0 struct]

Determine the Incoming Link Source

lkSrc = source(lkIn);

1 Functions

1-58

Convert Link Source to Model Object

mo = slreq.structToObj(lkSrc);

Determine Outgoing Link from the Model Object

lkOut = slreq.outLinks(mo)

lkOut =
 Link with properties:

 Type: 'Implement'
 Description: 'R11: Maximum Throttle Threshold (original_thrust_reverser_requirements#11)'
 Keywords: {}
 Rationale: ''
 CreatedOn: 25-Mar-2019 16:10:06
 CreatedBy: 'asriram'
 ModifiedOn: 25-Mar-2019 16:10:06
 ModifiedBy: 'asriram'
 Revision: 14
 SID: 52
 Comments: [0x0 struct]

Close Files

slreq.clear;
bdclose all;

Input Arguments
node — Linkable item to get outgoing links for
struct

A linkable item that may have outgoing requirements links. Common examples include a block,
function, or TestCase.
Example: Simulink.Gain
Example: TestCase with properties
Data Types: struct

Output Arguments
ks — Link(s) incoming to node
Link or Link array

A Link or Link array incoming to the linkable item.

See Also
slreq.inLinks | slreq.structToObj

Introduced in R2017b

 slreq.outLinks

1-59

slreq.refreshLinkDependencies
Refresh requirement link dependencies

Syntax
slreq.refreshLinkDependencies()

Description
slreq.refreshLinkDependencies() recreates all requirement link dependencies. Use this
command to:

• Refresh corrupted, missing, or incorrect requirement link dependencies if a project is open.
• Create dependency information when working with older projects and model files with embedded

link sets.

See Also
Topics
“Review Requirement Links”

Introduced in R2018b

1 Functions

1-60

slreq.resetViewSettings
Reset saved view settings

Syntax
slreq.resetViewSettings('all')
slreq.resetViewSettings('editor')
slreq.resetViewSettings(ModelName)

Description
slreq.resetViewSettings('all') resets all saved view settings.

slreq.resetViewSettings('editor') resets all saved view settings for the Requirements
Editor.

slreq.resetViewSettings(ModelName) resets all saved view settings for the model specified by
ModelName.

Input Arguments
ModelName — Model name
character vector

Simulink model name, specified as a character vector.
Example: 'vdp', 'f14'

See Also

Introduced in R2018b

 slreq.resetViewSettings

1-61

slreq.show
Navigate to link source or destination

Syntax
slreq.show(tgt)

Description
slreq.show(tgt) navigates to tgt, a link source or destination. The source or destination object
opens in the corresponding interface, such as a block in a model, or test in the Test Manager.

Examples

Show Link Source

This example shows how to navigate to a link source.

Load Requirement Set and Links

rq = slreq.load('original_thrust_reverser_requirements.slreqx');
lk = slreq.load('reqs_validation_property_proving_original_model.slmx');

Navigate to a Link Source

sl = getLinks(lk);
sl2 = sl(2);
slreq.show(source(sl2))

1 Functions

1-62

Cleanup

Cleanup commands. Clears open requirement sets without saving changes, and closes open models
without saving changes.

slreq.clear;
bdclose all

Input Arguments
tgt — Link source or destination
struct

Link source or destination, as may be returned by source or destination for a Link.
Example: struct with fields
Data Types: struct

See Also
slreq.Link | slreq.inLinks | slreq.outLinks

Introduced in R2020a

 slreq.show

1-63

slreq.structToObj
Convert link source or destination information from structure to model object type

Syntax
ot = slreq.structToObj(linkinfo)

Description
ot = slreq.structToObj(linkinfo) converts the source or destination link information in the
structure linkinfo to the corresponding object type, ot. The object type returned can include
Simulink blocks, Simulink Test test cases, or other object types compatible with Simulink
Requirements.

Examples

Convert Link Source and Destination to Model Entity

This example shows how to get the structure containing unique requirement source and destination
information, then convert the structure information to the specific source and destination model
entity.

Load Model, Requirement Set, and Links

load_system('reqs_validation_property_proving_original_model');
reqset = slreq.load('original_thrust_reverser_requirements.slreqx');
linkset = slreq.load('reqs_validation_property_proving_original_model.slmx');

For a Link Set

Get sources from a link set, get a single source, and convert the structure to the model entity.

linkSources = sources(linkset);
linkSource1 = linkSources(1);
modelSource1 = slreq.structToObj(linkSource1);

For a Link

Get a link from the link set, get the source and destination for that link.

links = getLinks(linkset);
link2 = links(2);
linkSource2 = source(link2);
linkDest2 = destination(link2);

Convert the source and destination structure to the model entity.

modelSource2 = slreq.structToObj(linkSource2);
modelDest2 = slreq.structToObj(linkDest2);

1 Functions

1-64

Clear Example Files

Cleanup commands -- close the open model, and clear and close the open requirement and link set.

slreq.clear;
close_system('reqs_validation_property_proving_original_model',0)

Input Arguments
linkinfo — Link information from a slreq.Link or slreq.LinkSet
struct

linkinfo contains source artifact and unique identification information for particular links, as
returned by

• sources for a slreq.LinkSet.
• source or destination for a slreq.Link.

Example: struct with fields
Data Types: struct

Output Arguments
ot — Source or destination object
Requirement, model, or data entity

ot is the requirement, model, or data entity corresponding to the source artifact and unique
identification in linkinfo. The value of ot depends on the type of entity the Link has as source or
destination.

See Also
slreq.Link | slreq.LinkSet

Topics
“Use Command-line API to Update or Repair Requirements Links”

Introduced in R2018a

 slreq.structToObj

1-65

rmi
Interact programmatically with Requirements Management Interface

Syntax
reqlinks = rmi('createEmpty')
reqlinks = rmi('get', object)
reqlinks = rmi('get', sig_builder, group_idx)
rmi('set', model, reqlinks)
rmi('set', sig_builder, reqlinks, group_idx)
rmi('cat', model, reqlinks)
cnt = rmi('count', object)
rmi('clearAll', object)
rmi('clearAll', object, 'deep')
rmi('clearAll', object, 'noprompt')
rmi('clearAll', object, 'deep', 'noprompt')

cmdStr = rmi('navCmd', object)
[cmdStr, titleStr] = rmi('navCmd', object)
object = rmi('guidlookup', model, guidStr)
rmi('highlightModel', object)
rmi('unhighlightModel', object)
rmi('view', object, index)
dialog = rmi('edit', object)
guidStr = rmi('guidget', object)

rmi('report', model)
rmi('report', matlabFilePath)
rmi('report', dictionaryFile)
rmi('projectreport')

rmi setup
rmi register linktypename
rmi unregister linktypename
rmi linktypelist

number_problems = rmi('checkdoc')
number_problems = rmi('checkdoc', docName)
rmi('check', matlabFilePath)
rmi('check', dictionaryFile)

rmi('doorssync', model)
[objHs, parentIdx, isSf, objSIDs] = rmi('getObjectsInModel', model)
[objName, objType] = rmi('getObjLabel', object)

rmi('setDoorsLabelTemplate', template)
template = rmi('getDoorsLabelTemplate')
label = rmi('doorsLabel', moduleID, objectID)
totalModifiedLinks = rmi('updateDoorsLabels', model)

1 Functions

1-66

Description
reqlinks = rmi('createEmpty') creates an empty instance of the requirement links data
structure.

reqlinks = rmi('get', object) returns the requirement links data structure for object.

reqlinks = rmi('get', sig_builder, group_idx) returns the requirement links data
structure for the Signal Builder group specified by the index group_idx.

rmi('set', model, reqlinks) sets reqlinks as the requirements links for model.

rmi('set', sig_builder, reqlinks, group_idx) sets reqlinks as the requirements links
for the signal group group_idx in the Signal Builder block sig_builder.

rmi('cat', model, reqlinks) adds the requirements links in reqlinks to existing
requirements links for model.

cnt = rmi('count', object) returns the number of requirements links for object.

rmi('clearAll', object) deletes all requirements links for object.

rmi('clearAll', object, 'deep') deletes all requirements links in the model containing
object.

rmi('clearAll', object, 'noprompt') deletes all requirements links for object and does not
prompt for confirmation.

rmi('clearAll', object, 'deep', 'noprompt') deletes all requirements links in the model
containing object and does not prompt for confirmation.

cmdStr = rmi('navCmd', object) returns the MATLAB command cmdStr used to navigate to
object.

[cmdStr, titleStr] = rmi('navCmd', object) returns the MATLAB command cmdStr and
the title titleStr that provides descriptive text for object.

object = rmi('guidlookup', model, guidStr) returns the object name in model that has
the globally unique identifier guidStr.

rmi('highlightModel', object) highlights all of the objects in the parent model of object that
have requirement links.

rmi('unhighlightModel', object) removes highlighting of objects in the parent model of
object that have requirement links.

rmi('view', object, index) accesses the requirement numbered index in the requirements
document associated with object.

dialog = rmi('edit', object) displays the Requirements dialog box for object and returns
the handle of the dialog box.

guidStr = rmi('guidget', object) returns the globally unique identifier for object. A
globally unique identifier is created for object if it lacks one.

rmi('report', model) generates a Requirements Traceability report in HTML format for model.

 rmi

1-67

rmi('report', matlabFilePath) generates a Requirements Traceability report in HTML format
for the MATLAB code file specified by matlabFilePath.

rmi('report', dictionaryFile) generates a Requirements Traceability report in HTML format
for the Simulink data dictionary specified by dictionaryFile.

rmi('projectreport') generates a Requirements Traceability report in HTML format for the
current project. The top-level page of this report has HTTP links to reports for each project item that
has requirements traceability associations. For more information, see “Create Requirements
Traceability Report for A Project”.

rmi setup configures RMI for use with your MATLAB software and installs the interface for use with
the IBM Rational DOORS software.

rmi register linktypename registers the custom link type specified by the function
linktypename. For more information, see “Custom Link Type Registration”.

rmi unregister linktypename removes the custom link type specified by the function
linktypename. For more information, see “Custom Link Type Registration”.

rmi linktypelist displays a list of the currently registered link types. The list indicates whether
each link type is built-in or custom, and provides the path to the function used for its registration.

number_problems = rmi('checkdoc') checks validity of links to Simulink from a requirements
document in Microsoft Word, Microsoft Excel, or IBM Rational DOORS. It prompts for the
requirements document name, returns the total number of problems detected, and opens an HTML
report in the MATLAB Web browser. For more information, see “Validate Requirements Links in a
Requirements Document”.

number_problems = rmi('checkdoc', docName) checks validity of links to Simulink from the
requirements document specified by docName. It returns the total number of problems detected and
opens an HTML report in the MATLAB Web browser. For more information, see “Validate
Requirements Links in a Requirements Document”.

rmi('check', matlabFilePath) checks consistency of traceability links associated with MATLAB
code lines in the .m file matlabFilePath, and opens an HTML report in the MATLAB Web browser.

rmi('check', dictionaryFile) checks consistency of traceability links associated with the
Simulink data dictionary dictionaryFile, and opens an HTML report in the MATLAB Web browser.

rmi('doorssync', model) opens the DOORS synchronization settings dialog box, where you can
customize the synchronization settings and synchronize your model with an open project in an IBM
Rational DOORS database.

[objHs, parentIdx, isSf, objSIDs] = rmi('getObjectsInModel', model) returns a list
of Simulink objects that may be considered for inclusion in the IBM Rational DOORS surrogate
module.

[objName, objType] = rmi('getObjLabel', object) returns Simulink object Name and
Type information for the Simulink object that you link to with a third-party requirements
management application.

rmi('setDoorsLabelTemplate', template) specifies a new custom template for labels of
requirements links to IBM Rational DOORS. The default label template contains the section number

1 Functions

1-68

and object heading for the DOORS requirement link target. To revert the link label template back to
the default, enter rmi('setDoorsLabelTemplate', '') at the MATLAB command prompt.

template = rmi('getDoorsLabelTemplate') returns the currently specified custom template
for labels of requirements links to IBM Rational DOORS.

label = rmi('doorsLabel', moduleID, objectID) generates a label for the requirements
link to the IBM Rational DOORS object specified by objectID in the DOORS module specified by
moduleID, according to the current template.

totalModifiedLinks = rmi('updateDoorsLabels', model) updates all IBM Rational DOORS
requirements links labels in model according to the current template.

Examples

Requirements Links Management in Example Model

Get a requirement associated with a block in the slvnvdemo_fuelsys_officereq model, change
its description, and save the requirement back to that block. Define a new requirement link and add it
to the existing requirements links in the block.

Get requirement link associated with the Airflow calculation block in the
slvnvdemo_fuelsys_officereq example model.

slvnvdemo_fuelsys_officereq;
blk_with_req = ['slvnvdemo_fuelsys_officereq/fuel rate controller/'...
'Airflow calculation']
reqts = rmi('get', blk_with_req);

Change the description of the requirement link.

reqts.description = 'Mass airflow estimation';

Save the changed requirement link description for the Airflow calculation block.

addpath(fullfile(matlabroot,'toolbox','slrequirements',...
'slrequirementsdemos','fuelsys_req_docs'))
rmi('set', blk_with_req, reqts);

Create new requirement link to example document fuelsys_requirements2.htm.

new_req = rmi('createempty');
new_req.doc = 'fuelsys_requirements2.htm';
new_req.description = 'New requirement';

Add new requirement link to existing requirements links for the Airflow calculation block.

rmi('cat', blk_with_req, new_req);

Requirements Traceability Report for Example Model

Create HTML report of requirements traceability data in example model.

Create an HTML requirements report for the slvnvdemo_fuelsys_officereq example model.

 rmi

1-69

rmi('report', 'slvnvdemo_fuelsys_officereq');

The MATLAB Web browser opens, showing the report.

Labels for Requirements Links to IBM Rational DOORS

Specify a new label template for links to requirements in DOORS, and update labels of all DOORS
requirements links in your model to fit the new template.

Specify a new label template for requirements links to IBM Rational DOORS so that new links to
DOORS objects are labeled with the corresponding module ID, object absolute number, and the value
of the ‘Backup’ attribute.

rmi('setDoorsLabelTemplate', '%m:%n [backup=%<Backup>]');

Specify a new label template for requirements links to IBM Rational DOORS and set the maximum
label length to (for example) 200 characters.

rmi('setDoorsLabelTemplate', '%h %200');

Update existing DOORS requirements link labels to match the new specified template in your model
example_model. When updating labels, DOORS must be running and all linked modules must be
accessible for reading.

rmi('updateDoorsLabels', example_model);

Input Arguments
model — Simulink model or Stateflow chart with which requirements can be associated
name | handle

Simulink model or Stateflow chart with which requirements can be associated, specified as a
character vector or handle.
Example: 'slvnvdemo_officereq'
Data Types: char

object — Model object with which requirements can be associated
name | handle

Model object with which requirements can be associated, specified as a character vector or handle.
Example: 'slvnvdemo_fuelsys_officereq/fuel rate controller/Airflow calculation'
Data Types: char

sig_builder — Signal Builder block containing signal group with requirements traceability
associations
name | handle

Signal Builder block containing signal group with requirements traceability associations, specified as
a character vector or handle.
Data Types: char

1 Functions

1-70

group_idx — Signal Builder group index
integer

Signal Builder group index, specified as a scalar.
Example: 2
Data Types: char

matlabFilePath — MATLAB code file with requirements traceability associations
path

MATLAB code file with requirements traceability associations, specified as the path to the file.
Data Types: char

dictionaryFile — Simulink data dictionary with requirements traceability associations
character vector

Simulink data dictionary with requirements traceability associations, specified as a character vector
containing the file name and, optionally, path of the dictionary.
Data Types: char

guidStr — Globally unique identifier for model object
character vector

Globally unique identifier for model object object, specified as a character vector.
Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167
Data Types: char

index — Index number of requirement linked to model object
integer

Index number of requirement linked to model object, specified as an integer.

docName — Requirements document in external application
file name | path

Requirements document in external application, specified as a character vector that represents one of
the following:

• IBM Rational DOORS module ID.
• path to Microsoft Word requirements document.
• path to Microsoft Excel requirements document.

For more information, see “Validate Requirements Links in a Requirements Document”.

label — Label for links to requirements in IBM Rational DOORS
character vector

Label for links to requirements in IBM Rational DOORS, specified as a character vector.
Data Types: char

 rmi

1-71

template — Template label for links to requirements in IBM Rational DOORS
character vector

Template label for links to requirements in IBM Rational DOORS, specified as a character vector.

You can use the following format specifiers to include the associated DOORS information in your
requirements links labels:

%h Object heading
%t Object text
%p Module prefix
%n Object absolute number
%m Module ID
%P Project name
%M Module name
%U DOORS URL
%<ATTRIBUTE_NAME> Other DOORS attribute you specify

Example: '%m:%n [backup=%<Backup>]'
Data Types: char

moduleID — IBM Rational DOORS module
DOORS module ID

IBM Rational DOORS module, specified as the unique DOORS module ID.
Data Types: char

objectID — IBM Rational DOORS object
DOORS object ID

IBM Rational DOORS object in the DOORS module moduleID, specified as the locally unique DOORS
ID.
Data Types: char

Output Arguments
reqlinks — Requirement links data
struct

Requirement links data, returned as a structure array with the following fields:

doc Character vector identifying requirements document

1 Functions

1-72

id Character vector defining location in requirements document. The first
character specifies the identifier type:

First
Character

Identifier Example

? Search text, the first
occurrence of which is located
in requirements document

'?Requirement 1'

@ Named item, such as bookmark
in a Microsoft Word file or an
anchor in an HTML file

'@my_req'

Page or item number '#21'
> Line number '>3156'
$ Worksheet range in a

spreadsheet
'$A2:C5'

linked Boolean value specifying whether the requirement link is accessible for report
generation and highlighting:
1 (default). Highlight model object and include requirement link in reports.
0

description Character vector describing the requirement
keywords Optional character vector supplementing description
reqsys Character vector identifying the link type registration name; 'other' for

built-in link types

cmdStr — Command used to navigate to model object
character vector

Command used to navigate to model object object, returned as a character vector.
Example: rmiobjnavigate('slvnvdemo_fuelsys_officereq.slx',
'GIDa_59e165f5_19fe_41f7_abc1_39c010e46167');

titleStr — Textual description of model object with requirements links
character vector

Textual description of model object with requirements links, returned as a character vector.
Example: slvnvdemo_fuelsys_officereq/.../Airflow calculation/Pumping Constant
(Lookup2D)

guidStr — Globally unique identifier for model object
character vector

Globally unique identifier for model object object, returned as a character vector.
Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167

dialog — Requirements dialog box for model object
handle

Requirements dialog box for model object object, returned as a handle to the dialog box.

 rmi

1-73

number_problems — Total count of invalid links detected in external document
integer

Total count of invalid links detected in external document docName.

For more information, see “Validate Requirements Links in a Requirements Document”.

totalModifiedLinks — Total count of DOORS requirements links updated with new label
template
integer

Total count of DOORS requirements links updated with new label template.

objHs — Numeric handles
array

List of numeric handles, returned as an array.

parentIdx — Model hierarchy indices
array

Model hierarchy indices, returned as an array.

isSf — List position to Stateflow object correspondence
array

Logical array that indicates which list positions correspond to which Stateflow objects.

objSIDs — Simulink IDs
array

Session-independent Simulink IDs, returned as an array.

See Also
rmipref | rmiobjnavigate | rmidocrename | rmitag | rmimap.map |
RptgenRMI.doorsAttribs

Introduced in R2006b

1 Functions

1-74

rmidata.export
Move requirements traceability data to external .req file

Syntax
[total_linked,total_links] = rmidata.export
[total_linked,total_links] = rmidata.export(model)

Description
[total_linked,total_links] = rmidata.export moves requirements traceability data
associated with the current Simulink model to an external file named model_name.req.
rmidata.export saves the file in the same folder as the model. rmidata.export deletes the
requirements traceability data stored in the model and saves the modified model.

[total_linked,total_links] = rmidata.export(model) moves requirements traceability
data associated with model to an external file named model_name.req. rmidata.export saves the
file in the same folder as model. rmidata.export deletes the requirements traceability data stored
in the model and saves the modified model.

Input Arguments
model

Name or handle of a Simulink model

Output Arguments
total_linked

Integer indicating the number of objects in the model that have linked requirements

total_links

Integer indicating the total number of requirements links in the model

Examples
Move the requirements traceability data from the slvnvdemo_fuelsys_officereq model to an
external file:

rmidata.export('slvnvdemo_fuelsys_officereq');

See Also
rmi | rmidata.save | rmimap.map

Topics
“Requirements Link Storage”

 rmidata.export

1-75

Introduced in R2011b

1 Functions

1-76

rmimap.map
Associate externally stored requirements traceability data with model

Syntax
rmimap.map(model,reqts_file)
rmimap.map(model,'undo')
rmimap.map(model,'clear')

Description
rmimap.map(model,reqts_file) associates the requirements traceability data from reqts_file
with the Simulink model model.

rmimap.map(model,'undo') removes from the .slmx file associated with model the requirements
traceability data that was most recently saved in the .slmx file.

rmimap.map(model,'clear') removes from the .slmx file associated with model all
requirements traceability data.

Input Arguments
model

Name, handle, or full path for a Simulink model

reqts_file

Full path to the .slmx file that contains requirements traceability data for the model

Alternatives
To load a file that contains requirements traceability data for a model:

1 Open the model.
2 Open the Requirements Editor. In the Apps tab, click Requirements Manager. In the

Requirements tab, click Load Links.

Note The Load Links menu item appears only when your model is configured to store
requirements data externally. To specify external storage of requirements data for your model, in
the Requirements Settings dialog box under Storage > Default storage location for
requirements links data, select Store externally (in a separate *.slmx file).

3 Browse to the .slmx file that contains the requirements links.
4 Click OK.

Examples

 rmimap.map

1-77

Associate an External Requirements Traceability Data File with a Simulink Model

This example shows how to associate an external requirements traceability data file with a Simulink
model

Open the model. Define the path to the requirement file.

open_system('slvnvdemo_powerwindowController');
reqFile = fullfile('slvnvdemo_powerwindowRequirements.slmx');

Associate an external requirements traceability data file with a Simulink model. After associating the
information with the model, view the objects with linked requirements by highlighting the model.

rmimap.map('slvnvdemo_powerwindowController', reqFile);

Mapping ...\slrequirements-ex91255337\slvnvdemo_powerwindowController.slx to slvnvdemo_powerwindowRequirements.slmx

rmi('highlightModel', 'slvnvdemo_powerwindowController');

Cleanup

Clean up commands. Clear the open requirement sets and link sets without saving changes and close
the open models without saving changes.

slreq.clear;
bdclose all;

See Also
rmi | rmidata.save | rmidata.export

Topics
“Requirements Link Storage”

Introduced in R2015a

1 Functions

1-78

rmidata.save
Save requirements traceability data in external .req file

Syntax
rmidata.save(model)

Description
rmidata.save(model) saves requirements traceability data for a model in an external .req file.
The model must be configured to store requirements traceability data externally. This function is
equivalent to Save > Save Links Only in the Requirements tab.

Examples

Create New Requirement Link and Save Externally

Add a requirement link to an existing example model, and save the model requirements traceability
data in an external file.

Open a model called slvnvdemo_powerwindowController.

open_system('slvnvdemo_powerwindowController');

Specify that the model store requirements data externally.

rmipref('StoreDataExternally',1);

Create a new requirements link structure.

newReqLink = rmi('createEmpty');
newReqLink.description = 'newReqLink';

Specify the requirements document that you want to link to from the model. In this case, an example
requirements document is provided.

newReqLink.doc = [matlabroot '\toolbox\slvnv\rmidemos\' ...
 'powerwin_reqs\PowerWindowSpecification.docx'];

Specify the text of the requirement within the document to which you want to link.

 newReqLink.id = ['?passenger input consists of a vector' ...
'with three elements'];

Specify that the new requirements link that you created be attached to the Mux4 block of the
slvnvdemo_powerwindowController example model.

rmi('set', 'slvnvdemo_powerwindowController/Mux4', newReqLink);

Save the new requirement link that you just created in an external .req file associated with the
model.

 rmidata.save

1-79

rmidata.save('slvnvdemo_powerwindowController');

This function is equivalent to Save > Save Links Only in the Requirements tab.

To highlight the Mux4 block, turn on requirements highlighting for the
slvnvdemo_powerwindowController example model.

rmi('highlightModel', 'slvnvdemo_powerwindowController');

You can test your requirements link by right-clicking the Mux4 block. In the context menu, select
Requirements > 1. “newReqLink”.

Close the example model.

close_system('slvnvdemo_powerwindowController', 0);

You are not prompted to save unsaved changes because you saved the requirements link data outside
the model file. The model file remains unchanged.

Input Arguments
model — Name or handle of model with requirements links
character vector | handle

Name of model with requirements links, specified as a character vector, or handle to model with
requirements links. The model must be loaded into memory and configured to store requirements
traceability data externally.

If you have a new model with no existing requirements links, configure it for external storage as
described in “Requirements Link Storage”. You can also use the rmipref command to specify
storage settings.

If you have an existing model with internally stored requirements traceability data, convert that data
to external storage as described in “Move Internally Stored Requirements Links to External Storage”.
You can also use the rmidata.export command to convert existing requirements traceability data
to external storage.
Example: 'slvnvdemo_powerwindowController'
Example: get_param(gcs,'Handle')

See Also
rmimap.map | rmidata.export

Topics
“Requirements Link Storage”

Introduced in R2013b

1 Functions

1-80

rmidocrename
Update model requirements document paths and file names

Syntax
rmidocrename(model_handle, old_path, new_path)
rmidocrename(model_name, old_path, new_path)

Description
rmidocrename(model_handle, old_path, new_path) collectively updates the links from a
Simulink model to requirements files whose names or locations have changed. model_handle is a
handle to the model that contains links to the files that you have moved or renamed. old_path is a
character vector that contains the existing full or partial file or path name. new_path is a character
vector with the new full or partial file or path name.

rmidocrename(model_name, old_path, new_path) updates the links to requirements files
associated with model_name. You can pass rmidocrename a model handle or a model file name.

When using the rmidocrename function, make sure to enter specific character vectors for the old
document name fragments so that you do not inadvertently modify other links.

Examples
For the current Simulink model, update all links to requirements files that contain the character
vector 'project_0220', replacing them with 'project_0221':

rmidocrename(gcs, 'project_0220', 'project_0221')
Processed 6 objects with requirements, 5 out of 13 links were modified.

Alternatives
To update the requirements links one at a time, for each model object that has a link:

1 For each object with requirements, open the Requirements Traceability Link Editor by right-
clicking and selecting Requirements Traceability > Open Link Editor.

2 Edit the Document field for each requirement that points to a moved or renamed document.
3 Click Apply to save the changes.

See Also
rmi

Introduced in R2009b

 rmidocrename

1-81

rmiobjnavigate
Navigate to model objects using unique Requirements Management Interface identifiers

Syntax
rmiobjnavigate(modelPath, guId)
rmiobjnavigate(modelPath, guId, grpNum)

Description
rmiobjnavigate(modelPath, guId) navigates to and highlights the specified object in a
Simulink model.

rmiobjnavigate(modelPath, guId, grpNum) navigates to the signal group number grpNum of
a Signal Builder block identified by guId in the model modelPath.

Input Arguments
modelPath

A full path to a Simulink model file, or a Simulink model file name that can be resolved on the
MATLAB path.

guId

A unique identifier that the RMI uses to identify a Simulink or Stateflow object.

grpNum

Integer indicating a signal group number in a Signal Builder block

Examples
Open the slvnvdemo_fuelsys_officereq example model and get the unique identifier for the
MAP Sensor block:
% Open example model
slvnvdemo_fuelsys_officereq;
% Get the Ssession Independent Identifier of the MAP Sensor Block
targetSID = Simulink.ID.getSID('slvnvdemo_fuelsys_officereq/MAP sensor');

Navigate to the MAP Sensor block using rmiobjnavigate and the unique identifier returned in the
previous step:
% Split targetSID into two components
[targetModel, targetObj] = strtok(targetSID,':');
% Navigate to the MAP sensor using the model name and model guID
rmiobjnavigate(targetModel, targetObj)

See Also
rmi

1 Functions

1-82

Topics
“Use the rmiobjnavigate Function”

Introduced in R2010b

 rmiobjnavigate

1-83

rmipref
Get or set RMI preferences stored in prefdir

Syntax
rmipref

currentVal = rmipref(prefName)

previousVal = rmipref(Name,Value)

Description
rmipref returns list of Name,Value pairs corresponding to Requirements Management Interface
(RMI) preference names and accepted values for each preference.

currentVal = rmipref(prefName) returns the current value of the preference specified by
prefName.

previousVal = rmipref(Name,Value) sets a new value for the RMI preference specified by
Name, and returns the previous value of that RMI preference.

Examples

References to Simulink Model in External Requirements Documents

Choose the type of reference that the RMI uses when it creates links to your model from external
requirements documents. The reference to your model can be either the model file name or the full
absolute path to the model file.

The value of the 'ModelPathReference' preference determines how the RMI stores references to
your model in external requirements documents. To view the current value of this preference, enter
the following code at the MATLAB command prompt.

currentVal = rmipref('ModelPathReference')

The default value of the 'ModelPathReference' preference is 'none'.

currentVal =

none

This default value specifies that the RMI uses only the model file name in references to your model
that it creates in external requirements documents.

Automatic Application of User Tags to Selection-Based Requirements Links

Configure the RMI to automatically apply a specified list of user tag keywords to new selection-based
requirements links that you create.

1 Functions

1-84

Specify that the user tags design and reqts apply to new selection-based requirements links that
you create.

previousVal = rmipref('SelectionLinkTag','design,reqts')

When you specify a new value for an RMI preference, rmipref returns the previous value of that
RMI preference. In this case, previousVal is an empty character vector, the default value of the
'SelectionLinkTag' preference.

previousVal =

 ''

View the currently specified value for the 'SelectionLinkTag' preference.

currentVal = rmipref('SelectionLinkTag')

The function returns the currently specified comma-separated list of user tags.

currentVal =

design,reqts

These user tags apply to all new selection-based requirements links that you create.

Internal Storage of Requirements Traceability Data

Configure the RMI to embed requirements links data in the model file instead of in a separate .req
file.

Note If you have existing requirements links for your model that are stored internally, you need to
move these links into an external .req file before you change the storage settings for your
requirements traceability data. See “Move Internally Stored Requirements Links to External Storage”
for more information.

If you would like to embed requirements traceability data in the model file, set the
'StoreDataExternally' preference to 0.

previousVal = rmipref('StoreDataExternally',0)

When you specify a new value for an RMI preference, rmipref returns the previous value of that
RMI preference. By default, the RMI stores requirements links data externally in a separate .req file,
so the previous value of this preference was 1.

previousVal =

 1

After you set the 'StoreDataExternally' preference to 0, your requirements links are embedded
in the model file.

currentVal = rmipref('StoreDataExternally')

 rmipref

1-85

currentVal =

 0

Input Arguments
prefName — RMI preference name
'BiDirectionalLinking' | 'FilterRequireTags' | 'CustomSettings' | ...

RMI preference name, specified as the corresponding Name character vector listed in “Name-Value
Pair Arguments” on page 1-86.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside single quotes (' ').
Example: 'BiDirectionalLinking',true enables bidirectional linking for your model, so that
when you create a selection-based link to a requirements document, the RMI creates a corresponding
link to your model from the requirements document.

BiDirectionalLinking — Bidirectional selection linking preference
false (default) | true

Bidirectional selection linking preference, specified as a numeric or logical 1 (true) or 0 (false).

This preference specifies whether to simultaneously create return link from target to source when
creating link from source to target. This setting applies only for requirements document types that
support selection-based linking.
Data Types: logical

DocumentPathReference — Preference for path format of links to requirements documents
from model
'modelRelative' (default) | 'absolute' | 'pwdRelative' | 'none'

Preference for path format of links to requirements documents from model, specified as one of the
following values.

Value Document reference contains...
'absolute' full absolute path to requirements document.
'pwdRelative' path relative to MATLAB current folder.
'modelRelative' path relative to model file.
'none' document file name only.

For more information, see “Document Path Storage”.
Data Types: char

DuplicateOnCopy — Preference for copying requirements links with model objects
true (default) | false

Preference for copying requirements links along with model objects, specified as a numeric or logical
1 (true) or 0 (false).

1 Functions

1-86

This preference specifies whether requirements links should be duplicated when copying Simulink
and Stateflow objects. When set to false, links are duplicated only when you highlight links in the
source model where the model objects are copied from.
Data Types: logical

ModelPathReference — Preference for path format in links to model from requirements
documents
'none' (default) | 'absolute'

Preference for path format in links to model from requirements documents, specified as one of the
following values.

Value Model reference contains...
'absolute' full absolute path to model.
'none' model file name only.

Data Types: char

LinkIconFilePath — Preference to use custom image file as requirements link icon
empty character vector (default) | full image file path

Preference to use custom image file as requirements link icon, specified as full path to icon or small
image file. This image will be used for requirements links inserted in external documents.
Data Types: char

FilterEnable — Preference to enable filtering by user tag keywords
false (default) | true

Preference to enable filtering by user tag keywords, specified as a numeric or logical 1 (true) or 0
(false). When you filter by user tag keywords, you can include or exclude subsets of requirements
links in highlighting or reports. You can specify user tag keywords for requirements links filtering in
the 'FilterRequireTags' and 'FilterExcludeTags' preferences. For more information about
requirements filtering, see “Filter Requirements with User Tags”.
Data Types: logical

FilterRequireTags — Preference for user tag keywords for requirements links
empty character vector (default) | comma-separated list of user tag keywords

Preference for user tag keywords for requirements links, specified as a comma-separated list of
words or phrases in a character vector. These user tags apply to all new requirements links you
create. Requirements links with these user tags are included in model highlighting and reports. For
more information about requirements filtering, see “Filter Requirements with User Tags”.
Data Types: char

FilterExcludeTags — Preference to exclude certain requirements links from model
highlighting and reports
empty character vector (default) | comma-separated list of user tag keywords

Preference to exclude certain requirements links from model highlighting and reports, specified as a
comma-separated list of user tag keywords. Requirements links with these user tags are excluded
from model highlighting and reports. For more information about requirements filtering, see “Filter
Requirements with User Tags”.

 rmipref

1-87

Data Types: char

FilterMenusByTags — Preference to disable labels of requirements links with designated
user tags
false (default) | true

Preference to disable labels of requirements links with designated user tags, specified as a numeric
or logical 1 (true) or 0 (false). When set to true, if a requirement link has a user tag designated in
'FilterExcludeTags' or 'FilterRequireTags', that requirements link will be disabled in the
Requirements context menu. For more information about requirements filtering, see “Filter
Requirements with User Tags”.
Data Types: logical

FilterConsistencyChecking — Preference to filter Model Advisor requirements
consistency checks with designated user tags
false (default) | true

Preference to filter Model Advisor requirements consistency checks with designated user tags,
specified as a numeric or logical 1 (true) or 0 (false). When set to true, Model Advisor
requirements consistency checks include requirements links with user tags designated in
'FilterRequireTags' and excludes requirements links with user tags designated in
'FilterExcludeTags'. For more information about requirements filtering, see “Filter
Requirements with User Tags”.
Data Types: logical

KeepSurrogateLinks — Preference to keep DOORS surrogate links when deleting all
requirements links
empty (default) | false | true

Preference to keep DOORS surrogate links when deleting all requirements links, specified as a
numeric or logical 1 (true) or 0 (false). When set to true, right-clicking Requirements at This
Level > Delete All Outgoing Links deletes all requirements links including DOORS surrogate
module requirements links. When not set to true or false, right-clicking Requirements at This
Level > Delete All Outgoing Links opens a dialog box with a choice to keep or delete DOORS
surrogate links.
Data Types: logical

ReportFollowLibraryLinks — Preference to include requirements links in referenced
libraries in generated report
false (default) | true

Preference to include requirements links in referenced libraries in generated report, specified as a
numeric or logical 1 (true) or 0 (false). When set to true, generated requirements reports include
requirements links in referenced libraries.
Data Types: logical

ReportHighlightSnapshots — Preference to include highlighting in model snapshots in
generated report
true (default) | false

1 Functions

1-88

Preference to include highlighting in model snapshots in generated report, specified as a numeric or
logical 1 (true) or 0 (false). When set to true, snapshots of model objects in generated
requirements reports include highlighting of model objects with requirements links.
Data Types: logical

ReportNoLinkItems — Preference to include model objects with no requirements links in
generated requirements reports
false (default) | true

Preference to include model objects with no requirements links in generated requirements reports,
specified as a numeric or logical 1 (true) or 0 (false). When set to true, generated requirements
reports include lists of model objects that have no requirements links.
Data Types: logical

ReportUseDocIndex — Preference to include short document ID instead of full path to
document in generated requirements reports
false (default) | true

Preference to include short document ID instead of full path to document in generated requirements
reports, specified as a numeric or logical 1 (true) or 0 (false). When set to true, generated
requirements reports include short document IDs, when specified, instead of full paths to
requirements documents.
Data Types: logical

ReportIncludeTags — Preference to list user tags for requirements links in generated
reports
false (default) | true

Preference to list user tags for requirements links in generated reports, specified as a numeric or
logical 1 (true) or 0 (false). When set to true, generated requirements reports include user tags
specified for each requirement link. For more information about requirements filtering, see “Filter
Requirements with User Tags”.
Data Types: logical

ReportDocDetails — Preference to include extra detail from requirements documents in
generated reports
false (default) | true

Preference to include extra detail from requirements documents in generated reports, specified as a
numeric or logical 1 (true) or 0 (false). When set to true, generated requirements reports load
linked requirements documents to include additional information about linked requirements. This
preference applies to Microsoft Word, Microsoft Excel, and IBM Rational DOORS requirements
documents only.
Data Types: logical

ReportLinkToObjects — Preference to include links to model objects in generated
requirements reports
false (default) | true

Preference to include links to model objects in generated requirements reports, specified as a
numeric or logical 1 (true) or 0 (false). When set to true, generated requirements reports include
links to model objects. These links work only if the MATLAB internal HTTP server is active.

 rmipref

1-89

Data Types: logical

SelectionLinkWord — Preference to include Microsoft Word selection link option in
Requirements context menu
true (default) | false

Preference to include Microsoft Word selection link option in Requirements context menu, specified
as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

SelectionLinkExcel — Preference to include Microsoft Excel selection link option in
Requirements context menu
true (default) | false

Preference to include Microsoft Excel selection link option in Requirements context menu, specified
as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

SelectionLinkDoors — Preference to include IBM Rational DOORS selection link option in
Requirements context menu
true (default) | false

Preference to include IBM Rational DOORS selection link option in Requirements context menu,
specified as a numeric or logical 1 (true) or 0 (false).
Data Types: logical

SelectionLinkTag — Preference for user tags to apply to new selection-based
requirements links
empty character vector (default) | comma-separated list of user tag keywords

Preference for user tags to apply to new selection-based requirements links, specified as a comma-
separated list of words or phrases in a character vector. These user tags automatically apply to new
selection-based requirements links that you create. For more information about requirements
filtering, see “Filter Requirements with User Tags”.
Data Types: char

StoreDataExternally — Preference to store requirements links data in external .req file
false (default) | true

Preference to store requirements links data in external .req file, specified as a numeric or logical 1
(true) or 0 (false). This setting applies to all new models and to existing models that do not yet
have requirements links. For more information about storage of requirements links data, see
“Requirements Link Storage”.
Data Types: logical

UseActiveXButtons — Preference to use legacy ActiveX® buttons in Microsoft Office
requirements documents
false (default) | true

Preference to use legacy ActiveX buttons in Microsoft Office requirements documents, specified as a
numeric or logical 1 (true) or 0 (false). The default value of this preference is false; requirements

1 Functions

1-90

links are URL-based by default. ActiveX requirements navigation is supported for backward
compatibility.
Data Types: logical

CustomSettings — Preference for storing custom settings
inUse: 0 (default) | structure array of custom field names and settings

Preference for storing custom settings, specified as a structure array. Each field of the structure array
corresponds to the name of your custom preference, and each associated value corresponds to the
value of that custom preference.
Data Types: struct

Output Arguments
currentVal — Current value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

Current value of the RMI preference specified by prefName. RMI preference names and their
associated possible values are listed in “Name-Value Pair Arguments” on page 1-86.

previousVal — Previous value of the RMI preference specified by prefName
true | false | 'absolute' | 'none' | ...

Previous value of the RMI preference specified by prefName. RMI preference names and their
associated possible values are listed in “Name-Value Pair Arguments” on page 1-86.

See Also
rmi

Topics
“Requirements Settings”

Introduced in R2013a

 rmipref

1-91

rmiref.insertRefs
Insert links to models into requirements documents

Syntax
[total_links, total_matches, total_inserted] = rmiref.insertRefs(model_name,
doc_type)

Description
[total_links, total_matches, total_inserted] = rmiref.insertRefs(model_name,
doc_type) inserts ActiveX controls into the open, active requirements document of type doc_type.
These controls correspond to links from model_name to the document. With these controls, you can
navigate from the requirements document to the model.

Input Arguments
model_name

Name or handle of a Simulink model

doc_type

A character vector that indicates the requirements document type:

• 'word'
• 'excel'

Examples
Remove the links in an example requirements document, and then reinsert them:

1 Open the example model:

slvnvdemo_fuelsys_officereq
2 Open the example requirements document:

open([matlabroot strcat('/toolbox/slrequirements/slrequirementsdemos/fuelsys_req_docs/',...
 'slvnvdemo_FuelSys_DesignDescription.docx')])

3 Remove the links from the requirements document:

rmiref.removeRefs('word')
4 Enter y to confirm the removal.
5 Reinsert the links from the requirements document to the model:

[total_links, total_matches, total_inserted] = ...
 rmiref.insertRefs(gcs, 'word')

See Also
rmiref.removeRefs

1 Functions

1-92

matlab:slvnvdemo_fuelsys_officereq

Introduced in R2011a

 rmiref.insertRefs

1-93

rmiref.removeRefs
Remove links to models from requirements documents

Syntax
rmiref.removeRefs(doc_type)

Description
rmiref.removeRefs(doc_type) removes all links to models from the open, active requirements
document of type doc_type.

Input Arguments
doc_type

A character vector that indicates the requirements document type:

• 'word'
• 'excel'
• 'doors'

Examples
Remove the links in this example requirements document:
open([matlabroot strcat('/toolbox/slvnv/rmidemos/fuelsys_req_docs/', ...
 'slvnvdemo_FuelSys_DesignDescription.docx')])
rmiref.removeRefs('word')

See Also
rmiref.insertRefs

Introduced in R2011a

1 Functions

1-94

rmitag
Manage user tags for requirements links

Syntax
rmitag(model, 'list')
rmitag(model, 'add', tag)
rmitag(model, 'add', tag, doc_pattern)
rmitag(model, 'delete', tag)
rmitag(model, 'delete', tag, doc_pattern)
rmitag(model, 'replace', tag, new_tag)
rmitag(model, 'replace', tag, new_tag, doc_pattern)
rmitag(model, 'clear', tag)
rmitag(model, 'clear', tag, doc_pattern)

Description
rmitag(model, 'list') lists all user tags in model.

rmitag(model, 'add', tag) adds tag as a user tag for all requirements links in model.

rmitag(model, 'add', tag, doc_pattern) adds tag as a user tag for all links in model,
where the full or partial document name matches the regular expression doc_pattern.

rmitag(model, 'delete', tag) removes the user tag, tag from all requirements links in model.

rmitag(model, 'delete', tag, doc_pattern) removes the user tag, tag, from all
requirements links in model, where the full or partial document name matches doc_pattern.

rmitag(model, 'replace', tag, new_tag) replaces tag with new_tag for all requirements
links in model.

rmitag(model, 'replace', tag, new_tag, doc_pattern) replaces tag with new_tag for
links in model, where the full or partial document name matches the regular expression
doc_pattern.

rmitag(model, 'clear', tag) deletes all requirements links that have the user tag, tag.

rmitag(model, 'clear', tag, doc_pattern) deletes all requirements links that have the user
tag, tag, and link to the full or partial document name specified in doc_pattern.

Input Arguments
model

Name of or handle to Simulink or Stateflow model with which requirements are associated.

tag

Character vector specifying user tag for requirements links.

 rmitag

1-95

doc_pattern

Regular expression to match in the linked requirements document name. Not case sensitive.

new_tag

Character vector that indicates the name of a user tag for a requirements link. Use this argument
when replacing an existing user tag with a new user tag.

Examples
Open the slvnvdemo_fuelsys_officereq example model, and add the user tag tmptag to all
objects with requirements links:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'add', 'tmptag');

Remove the user tag test from all requirements links:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'delete', 'test');

Delete all requirements links that have the user tag design:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'clear', 'design');

Change all instances of the user tag tmptag to safety requirement, where the document file
name extension is .docx:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'replace', 'tmptag', ...
 'safety requirements', '\.docx');

See Also
rmi | rmidocrename

Topics
“User Tags and Requirements Filtering”

Introduced in R2010a

1 Functions

1-96

RptgenRMI.doorsAttribs
IBM Rational DOORS attributes in requirements report

Syntax
settings = RptgenRMI.doorsAttribs('show')
tf = RptgenRMI.doorsAttribs('default')
tf = RptgenRMI.doorsAttribs(Name,Value)

Description
settings = RptgenRMI.doorsAttribs('show') returns the DOORS attribute report settings.
The listed attributes are included in generated requirements reports.

tf = RptgenRMI.doorsAttribs('default') restores the default requirements report settings
for DOORS attributes. The function returns 1 if the settings are changed without error. The default
settings are:

• Explicitly include the system attributes Object Heading and Object Text
• Include all other system attributes and user-defined attributes
• Omit the system attribute Created Thru
• Omit system attributes with empty string values
• Omit system attributes that are false

tf = RptgenRMI.doorsAttribs(Name,Value) specifies which DOORS attributes to include in
generated requirements reports. The function returns 1 if the settings are changed without error.

Note This function sets settings used when generating reports for requirements in IBM Rational
DOORS. These settings are not applied for generated reports for requirements in IBM Rational
DOORS Next.

Examples

Show the DOORS Attribute Report Settings

settings = RptgenRMI.doorsAttribs('show')

settings = 5x1 cell
 {'Object Heading' }
 {'Object Text' }
 {'$AllAttributes$'}
 {'$NonEmpty$' }
 {'-Created Thru' }

 RptgenRMI.doorsAttribs

1-97

Restore Default DOORS Attributes Report Settings

If you change the settings for which DOORS attributes to include in the requirements report, you can
restore the default settings.

Change the settings by omitting all attributes other than those that are explicitly included in the
report. Show the changed settings.

tf = RptgenRMI.doorsAttribs('type','none');

Excluding attributes...

settings = RptgenRMI.doorsAttribs('show')

settings = 4x1 cell
 {'Object Text' }
 {'-Created Thru' }
 {'+Last Modified By'}
 {'+Last Modified On'}

Restore the settings to default. Show the default settings.

tf = RptgenRMI.doorsAttribs('default');
settings = RptgenRMI.doorsAttribs('show')

settings = 5x1 cell
 {'Object Heading' }
 {'Object Text' }
 {'$AllAttributes$'}
 {'$NonEmpty$' }
 {'-Created Thru' }

The default settings are:

• Explicitly include the system attributes Object Heading and Object Text
• Include all other system attributes and user-defined attributes
• Omit the system attribute Created Thru
• Omit system attributes with empty string values
• Omit system attributes that are false

Include or Omit DOORS Attributes from the Requirements Report by Specifying Type

Specify that generated requirements reports will include only user-defined attributes.

tf = RptgenRMI.doorsAttribs('type','user');

Including user attributes...

Show the settings.

settings = RptgenRMI.doorsAttribs('show')

1 Functions

1-98

settings = 6x1 cell
 {'Object Text' }
 {'$NonEmpty$' }
 {'-Created Thru' }
 {'+Last Modified By'}
 {'+Last Modified On'}
 {'$UserAttributes$' }

Explicitly Include or Omit DOORS Attributes from the Requirements Report

Include the Last Modified By and Last Modified On attributes.

tf = RptgenRMI.doorsAttribs('add','Last Modified By');

Adding Last Modified By...

tf = RptgenRMI.doorsAttribs('add','Last Modified On');

Adding Last Modified On...

Omit the Object Heading attribute from the requirements report.

tf = RptgenRMI.doorsAttribs('remove','Object Heading');

Removing Object Heading...

Show the Current Settings

settings = RptgenRMI.doorsAttribs('show')

settings = 6x1 cell
 {'Object Text' }
 {'$AllAttributes$' }
 {'$NonEmpty$' }
 {'-Created Thru' }
 {'+Last Modified By'}
 {'+Last Modified On'}

Include or Omit Empty User-Defined DOORS Attributes from the Requirements Report

Include empty user-defined attributes in the requirements report.

tf = RptgenRMI.doorsAttribs('nonempty','off')

NonEmpty filter off...

tf = logical
 1

Show the current settings.

settings = RptgenRMI.doorsAttribs('show')

 RptgenRMI.doorsAttribs

1-99

settings = 5x1 cell
 {'Object Text' }
 {'-Created Thru' }
 {'+Last Modified By'}
 {'+Last Modified On'}
 {'$UserAttributes$' }

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'type','all'

type — Types of attributes to include or omit in report
'all' | 'user' | 'none'

Types of DOORS attributes to include or omit from the report, specified as 'all', 'user', or
'none'.
Example: 'type','all'

add — Attributes to add to report
character array

Attributes to add to the generated report, specified as a character array.
Example: 'add','Last Modified By'

Note The entered character array should be the same as a DOORS predefined system attribute or
user-defined attribute.

remove — Attributes to remove from report
character array

Attributes to omit from the generated report, specified as a character array.
Example: 'remove','Object Heading'

Note The entered character array should be the same as a DOORS predefined system attribute or
user-defined attribute.

nonempty — Include or omit empty attributes
'on' | 'off'

Whether to include or omit empty user-defined attributes in the report, specified as 'on' or 'off'.
Empty system-defined attributes are always excluded.
Example: 'nonempty','on'

1 Functions

1-100

Output Arguments
settings — Current DOORS attribute report settings
cell array

Current DOORS attribute report settings, returned as a cell array.

tf — Changed settings success status
1 | 0

Changed settings success status, returned as a 1 or 0 of data type logical.

See Also
rmi

Introduced in R2011b

 RptgenRMI.doorsAttribs

1-101

slwebview_req
Export Simulink system to Web views with requirements

Syntax
filename = slwebview_req(sysname)
filename = slwebview_req(sysname,Name,Value)

Description
filename = slwebview_req(sysname) exports the system sysname and its children to a web
page filename with contextual requirements information for the system displayed on a separate
panel of the layered model structure Web view.

filename = slwebview_req(sysname,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Note You can use slwebview_req only if you have also installed Simulink Report Generator™.

Examples

Export All Layers

Export all the layers (including libraries and masks) from the system gcs to the file filename

filename = slwebview_req(gcs, 'LookUnderMasks', 'all', 'FollowLinks', 'on')

Input Arguments
sysname — The system to export to a Web view file
character vector containing the path to the system | handle to a subsystem or block diagram | handle
to a chart or subchart

Exports the specified system or subsystem and its child systems to a Web view file, with contextual
requirements information for the system displayed on a separate panel of the layered model structure
Web view. By default, child systems of the sysname system are also exported. Use the SearchScope
name-value pair to export other systems, in relation to sysname.
Example: ‘sysname’

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ShowProgressBar','off'

1 Functions

1-102

SearchScope — Systems to export, relative to the sysname system
'CurrentAndBelow' (default) | 'Current' | 'CurrentAndAbove' | 'All'

'CurrentAndBelow' exports the Simulink system or the Stateflow chart specified by sysname and
all systems or charts that it contains.

'Current' exports only the Simulink system or the Stateflow chart specified by sysname.

'CurrentAndAbove' exports the Simulink system or the Stateflow chart specified by the sysname
and all systems or charts that contain it.

'All' exports all Simulink systems or Stateflow charts in the model that contains the system or chart
specified by sysname.
Data Types: char

LookUnderMasks — Specifies whether to export the ability to interact with masked blocks
'none' (default) | 'all'

'none' does not export masked blocks in the Web view. Masked blocks are included in the exported
systems, but you cannot access the contents of the masked blocks.

'all' exports all masked blocks.
Data Types: char

FollowLinks — Specifies whether to follow links into library blocks
'off' (default) | 'on'

'off' does not allow you to follow links into library blocks in a Web view.

'on' allows you to follow links into library blocks in a Web view.
Data Types: char

FollowModelReference — Specifies whether to access referenced models in a Web view
'off' (default) | 'on'

'off' does not allow you to access referenced models in a Web view.

'on' allows you to access referenced models in a Web view.
Data Types: char

ViewFile — Specifies whether to display the Web view in a Web browser when you export
the Web view
'on' (default) | 'off'

'on' displays the Web view in a Web browser when you export the Web view.

'off' does not display the Web view in a Web browser when you export the Web view.
Data Types: char

ShowProgressBar — Specifies whether to display the status bar when you export a Web
view
'on' (default) | 'off'

 slwebview_req

1-103

'on' displays the status bar when you export a Web view.

'off' does not display the status bar when you export a Web view.
Data Types: char

Output Arguments
filename — The name of the HTML file for displaying the Web view
character vector

Reports the name of the HTML file for displaying the Web view. Exporting a Web view creates the
supporting files, in a folder.

Tips
A Web view is an interactive rendition of a model that you can view in a Web browser. You can
navigate a Web view hierarchically to examine specific subsystems and to see properties of blocks
and signals.

You can use Web views to share models with people who do not have Simulink installed.

Web views require a Web browser that supports Scalable Vector Graphics (SVG).

See Also
slwebview_cov

Introduced in R2015a

1 Functions

1-104

Classes

2

slreq.Justification class
Package: slreq

Work with slreq.Justification objects

Description
Use slreq.Justification objects to work with requirements that you exclude from the
implementation and verification status metrics roll-up for your requirements sets. Justify a
requirement by creating an outgoing link from the slreq.Justification object to the
requirement and setting the link type to Implement or Verify.

Creation
jst = slreq.find(rs, 'Type', 'Justification', 'PropertyName', PropertyValue)
finds and returns an slreq.Justification object jst in the requirements set rs with additional
properties specified by PropertyName and PropertyValue.

jst = add(jt, 'PropertyName', PropertyValue) adds a child justification jst to the parent
justification jt with additional properties specified by PropertyName and PropertyValue.

Input Arguments

rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments

jst — Justification object
slreq.Justification object

Justification, returned as an slreq.Justification object.

Properties
Id — Justification custom ID
character vector

Custom ID of the justification, returned as a character vector. You cannot use spaces and '#' in
custom IDs.

Summary — Justification summary
character vector

2 Classes

2-2

Justification summary text, specified as a one-line, plain text character vector.

Description — Justification description
character vector

Justification description text, specified as a multiline character vector.

Rationale — Justification rationale
character vector

Justification rationale text, specified as a multiline character vector.

Keywords — Justification keywords
character array

Justification keywords, specified as a character array.

SID — Justification Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the justification.

CreatedOn — Date justification was created
datetime value

The date on which the justification was created, specified as a datetime value. The software
populates this property.

CreatedBy — Justification creator
character vector

The name of the individual or organization who created the requirement.

ModifiedOn — Date justification was modified
datetime value

The date on which the justification was last modified, specified as a datetime value. The software
populates this property.

ModifiedBy — Justification modifier
character vector

The name of the individual or organization who last modified the justification.

FileRevision — Justification revision number
scalar

Justification revision number, specified as a scalar.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the justification has unsaved changes. 0 for no unsaved changes and 1 for unsaved
changes.

 slreq.Justification class

2-3

Methods
add Add child justification
children Find children justifications
copy Copy and paste justification
demote Demote justifications
find Find children of parent justification
getAttribute Get justification attributes
isHierarchical Check if justification is hierarchical
move Move justification in hierarchy
moveDown Move justification down in hierarchy
moveUp Move justification up in hierarchy
parent Find parent item of justification
promote Promote justifications
remove Remove justification items
reqSet Return parent requirement set
setAttribute Set justification attributes
setHierarchical Change hierarchical justification status

Examples
Add Child Justifications

% Find justification objects in a requirement set Project_reqs
myJustifications = find(Project_reqs, 'Type', 'Justification')

myJustifications =

 1×2 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Add a child justification to the first justification in the array
myChildJustification = add(myJustifications(1), 'Id', '2.1', ...
'Summary', 'New Child Justification')

myChildJustification =

2 Classes

2-4

 Justification with properties:

 Id: '2.1'
 Summary: 'New Child Justification'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 25-Aug-2017 14:37:29
 CreatedBy: 'Jane Doe'
 ModifiedBy: 'John Doe'
 SID: 73
 FileRevision: 1
 ModifiedOn: 26-Aug-2017 17:30:20
 Dirty: 0
 Comments: [0×0 struct]

See Also
slreq.Reference | slreq.ReqSet | slreq.Requirement

Introduced in R2018b

 slreq.Justification class

2-5

slreq.Link class
Package: slreq

Work with link objects

Description
When you establish a traceable association between artifacts, Simulink Requirements creates an
slreq.Link object to store source and destination data of the link.

Creation
link = slreq.createLink(src, dest) creates an slreq.Link object link with source and
destination artifacts specified by src and dest respectively. The slreq.Link object is stored in the
Link set file that belongs to src.

outLinks = slreq.outLinks(src) returns an array of slreq.Link objects outLinks that
contains the outgoing links from the source artifact src.

inLinks = slreq.inLinks(dest) returns an array of slreq.Link objects inLinks that
contains the incoming links to the destination artifact dest.

Input Arguments

src — Link source artifact
struct

Link source artifact, specified as a MATLAB structure.

dest — Link destination artifact
struct

Link destination artifact, specified as a MATLAB structure.

Output Arguments

link — Link object
slreq.Link object

Handle to a link, returned as an slreq.Link object.

outLinks — Outgoing links
slreq.Link object array

Array of outgoing links.

inLinks — Incoming links
slreq.Link object array

Array of incoming links.

2 Classes

2-6

Properties
CreatedOn — Date link was created
datetime value

The date on which the link was created, specified as a datetime value. The software populates this
property.

CreatedBy — Link creator
character vector

The name of the individual or organization who created the link.

ModifiedOn — Date link was modified
datetime value

The date on which the link was last modified, specified as a datetime value. The software populates
this property.

ModifiedBy — Link modifier
character vector

The name of the individual or organization who last modified the link.

Comments — Link comments
struct

The comments that are attached with the link, returned as a structure.

Type — Link type enumeration
'Implement' | 'Verify' | 'Relate' | 'Derive' | 'Refine'

The relationship between the source and the destination artifacts. For more information, see “Link
Types”.

Description — Link description
character vector

Link descriptive text, specified as a multi-line character vector.

Keywords — Link keywords
character array

Link keywords, specified as character array.

Rationale — Link rationale
character vector

Link rationale text, specified as a multiline character vector.

SID — Link Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the link.

 slreq.Link class

2-7

Methods
destination Get link destination artifact
getAttribute Get link custom attributes
isResolved Check if the link is resolved
isResolvedDestination Check if the link destination is resolved
isResolvedSource Check if the link source is resolved
linkSet Return parent link set
remove Delete links
setAttribute Set link custom attributes
setDestination Set requirement link destination
setSource Set requirement link source
source Get link source artifact

Examples
Create Links
% Create a link between the current Simulink Object and a requirement
link1 = slreq.createLink(gcb, REQ)

link1 =

 Link with properties:

 Type: 'Implement'
 Description: 'Plant Specs'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 02-Sep-2017 15:49:28
 CreatedBy: 'Jane Doe'
 ModifiedOn: 21-Oct-2017 11:34:12
 ModifiedBy: 'John Doe'
 Comments: [0×0 struct]

% Create a link between a requirement and the current Stateflow object
link2 = slreq.createLink(REQ, sfgco);

Get Incoming Links
% Get the handle to a requirements set
myReqSet = slreq.find('Type', 'ReqSet', 'Name', 'Design_Spec');

% Get the handle to a requirement in myReqSet
myReq = find(myReqSet, 'Type', 'Requirement', 'Id', 'R1.1');

% Query incoming links to myReq
inLinks = slreq.inLinks(myReq);

Get Outgoing Links
% Load a link set and get link sources
myLinkSet = slreq.load('c5.slx');

2 Classes

2-8

allSrcs = myLinkSet.sources();

% Get outgoing links
myLink = slreq.outLinks(allSrcs(1));

See Also
slreq.LinkSet | slreq.Reference | slreq.ReqSet | slreq.Requirement |
slreq.createLink

Introduced in R2018a

 slreq.Link class

2-9

slreq.LinkSet class
Package: slreq

Work with link sets

Description
Instances of slreq.LinkSet are Link Set objects. Links are organized in Link Sets. Each Link Set is
associated with a source artifact such as a Simulink model or a data dictionary and is serialized into a
separate file which stores the links associated with it. The default location and name of the Link set
file matches that of the source artifact.

Creation
allLinkSets = slreq.find('Type', 'LinkSet') finds and returns an array of loaded
slreq.LinkSet objects allLinkSets.

myLinkSet = slreq.find('Type', 'LinkSet', 'Name', ArtifactName) finds and returns
an slreq.LinkSet object myLinkSet matching the artifact name specified by ArtifactName.

myLinkSet = slreq.load(ArtifactName) loads an slreq.LinkSet object myLinkSet
matching the artifact name specified by ArtifactName.

Input Arguments

ArtifactName — Link set artifact name
character vector

The name of the link set artifact, specified as a character vector.

Output Arguments

allLinkSets — Link sets
slreq.LinkSet array

Array of loaded link sets.

myLinkSet — Link set
slreq.LinkSet object

Link set, returned as an slreq.LinkSet object.

Properties
Filename — Link set file path
character vector

The file path of the link set, specified as a character vector.

2 Classes

2-10

Artifact — Container identifier
character vector

Top-level container identifier, such as a Microsoft Office document name, an IBM Rational DOORS
Module unique ID, Simulink model name, or Simulink Test Test Manager file name.

Domain — Link set custom link type
character vector

The custom link type of the links in the link set. For more information, see “Custom Link Types”.
Example: linktype_rmi_excel, linktype_rmi_doors

Revision — Link set revision number
scalar

Link set revision number, specified as a scalar.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the link set has unsaved changes. 0 for no unsaved changes and 1 for unsaved changes.

Description — Link set description
character vector

Link set description text, specified as a character vector.

CustomAttributeNames — Custom attributes associated with the link set
cell array of character vectors

Link set custom attribute names, specified as a cell array of character vectors.

Methods

addAttribute Add custom attribute to link set
deleteAttribute Delete custom attribute from link set
find Find links in link set with matching attribute values
getLinks Get links from link set
inspectAttribute Get information about link set custom attribute
save Save link set
sources Get link sources
updateAttribute Update information for link set custom attribute

Examples
Find, Load, and Edit a Link Set

Find a loaded link set by using the name.

myLinkSet1 = slreq.find('Type', 'LinkSet', 'Name', 'Project_req')

 slreq.LinkSet class

2-11

myLinkSet1 =

 LinkSet with properties:

 Description: ''
 Filename: 'Project_req.slmx'
 Artifact: 'Project_req.slreqx'
 Domain: 'linktype_rmi_slreq'
 Revision: 2
 Dirty: 0

Load a link set associated with a Simulink model called fuelsys.

myLinkSet2 = slreq.load('fuelsys.slx')

myLinkSet2 =

 LinkSet with properties:

 Description: ''
 Filename: 'C:\MATLAB\My_Files\fuelsys_linkset.slmx'
 Artifact: 'D:\Work\Design_Specs\fuelsys.slx'
 Domain: 'linktype_rmi_simulink'
 Revision: 2
 Dirty: 0

Set the link set description.

myLinkSet2.Description = 'Link set for the fuel system'

myLinkSet2 =

 LinkSet with properties:

 Description: 'Link set for the fuel system'
 Filename: 'C:\MATLAB\My_Files\fuelsys_linkset.slmx'
 Artifact: 'D:\Work\Design_Specs\fuelsys.slx'
 Domain: 'linktype_rmi_simulink'
 Revision: 2
 Dirty: 1

See Also
slreq.Link | slreq.Reference | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

2 Classes

2-12

slreq.Reference class
Package: slreq

Work with external requirement proxy objects

Description
Instances of slreq.Reference are proxies for external requirement objects that a third-party
external application manages and maintains. Referenced requirement objects are read-only but can
be synchronized from an external application and can exist only within a requirements set.

Creation
ref = find(rs, 'Type', 'Reference', 'PropertyName', PropertyValue) finds and
returns a referenced requirement or a set of referenced requirements ref in the requirements set rs
specified by the properties matching PropertyName and PropertyValue.

ref = add(rs, 'Artifact', FileName, 'PropertyName', PropertyValue) adds a
referenced requirement ref to a requirements set rs which references requirements from the
external document specified by FileName with properties and custom attributes specified by
PropertyName and PropertyValue.

Input Arguments

rs — Requirement set object
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

FileName — Container identifier
character vector

File name for a top-level container identifier, such as a Microsoft Office document name or an IBM
Rational DOORS Module unique ID.

Output Arguments

ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as an slreq.Reference object.

Properties
Id — Referenced requirement ID
character vector

Referenced requirement ID, returned as a character vector.

 slreq.Reference class

2-13

CustomId — Referenced requirement Custom ID
character vector

Referenced requirement custom ID, returned as a character vector.

Artifact — Container identifier
character vector

Top-level container identifier, like a Microsoft Office document name or an IBM Rational DOORS
Module unique ID.

ArtifactId — Requirement identifier
character vector

Unique requirement identifier in the source requirements document. For requirements imported from
IBM Rational DOORS, the ArtifactId is the Numeric Object Id. For requirements imported from
Microsoft Word, the bookmark names are used as the ArtifactId.

Domain — Requirements document custom link type
character vector

The custom link type of the requirements document. For more information, see “Custom Link Types”.
Example: 'linktype_rmi_doors', 'linktype_rmi_excel'

UpdatedOn — Date and time referenced requirement was last updated
datetime

The date and time the referenced requirement was last synchronized with the external document,
specified as a datetime value. The software automatically populates this property.

IsLocked — Referenced requirement lock indicator
1 (default) | 0

Indicates if the referenced requirement is locked. 1 for locked and 0 for unlocked.

Summary — Referenced requirement summary
character vector

Referenced requirement summary text, returned as a character vector.

Description — Referenced requirement description
character vector

Referenced requirement description text, returned as a multiline character vector.

Rationale — Referenced requirement rationale
character vector

Referenced requirement rationale text, returned as a multiline character vector.

Keywords — Referenced requirement keywords
character array

Referenced requirement keywords, specified as a character array.

2 Classes

2-14

Type — Referenced requirement type
character vector

Referenced requirement type. For more information, see “Requirement Types”.

SID — Referenced requirement Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the referenced requirement.

FileRevision — Referenced requirement revision number
scalar

Referenced requirement revision number, specified as a scalar.

ModifiedOn — Date referenced requirement was modified
datetime

The date the referenced requirement was last modified, specified as a datetime value. The software
automatically populates this property.

ModifiedBy — Referenced requirement modifier
character vector

The name of the individual or organization who last modified the referenced requirement.

CreatedOn — Date referenced requirement was created
datetime

The date the referenced requirement was created, specified as a datetime value. The software
automatically populates this property.

CreatedBy — Referenced requirement creator
character vector

The name of the individual or organization who created the referenced requirement.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the referenced requirement has unsaved changes. 0 for no unsaved changes and 1 for
unsaved changes.

Comments — Referenced requirement comments
structure array

The comments that are attached with the referenced requirement, returned as a structure.

 slreq.Reference class

2-15

Methods

add Add referenced requirements
addComment Add comments to referenced requirements
children Find children references
find Find children of parent referenced requirements
getAttribute Get referenced requirement custom attributes
getImplementationStatus Query referenced requirement implementation status summary
getVerificationStatus Query referenced requirement verification status summary
isJustifiedFor Check if referenced requirement is justified
justifyImplementation Justify referenced requirements for implementation
justifyVerification Justify referenced requirements for verification
parent Find parent item of referenced requirement
remove Remove referenced requirements
reqSet Return parent requirements set
setAttribute Set referenced requirement custom attributes
unlock Unlock referenced requirements
unlockAll Unlock all child referenced requirements for editing
updateFromDocument Update referenced requirements from external requirements document

Examples
Get the Handle to a Referenced Requirement

% Find a referenced requirement with Id R9 in a requirement set rs
ref = find(rs, 'Type', 'Reference', 'Id', 'R9')

ref =

 Reference with properties:

 Keywords: [0×0 char]
 Artifact: 'Req_doc.docx'
 Id: 'R9'
 Summary: 'System overview'
 Description: ''
 SID: 3
 Domain: 'linktype_rmi_word'
 SynchronizedOn: 25-Jul-2017 11:34:02

See Also
slreq.Link | slreq.LinkSet | slreq.ReqSet | slreq.Requirement | slreq.import

Introduced in R2018a

2 Classes

2-16

slreq.ReqSet class
Package: slreq

Work with Requirements sets

Description
Instances of slreq.ReqSet are Requirement Set objects.

Creation
newReqSet = slreq.new(reqSetName) creates a requirement set named reqSetName in the
current working folder.

newReqSet = slreq.new(reqSetPath) creates a requirement set on the specified path.

Input Arguments

reqSetName — Requirement set name
character vector

Name of the requirement set, specified as a character vector.
Example: 'Design Requirements'

reqSetPath — Requirement set file name and path
character vector

The file name and path of the requirement set, specified as a character vector.
Example: 'C:\MATLAB\myReqSet.slreqx'

Output Arguments

newReqSet — Requirements set
slreq.ReqSet object

An instance of the slreq.ReqSet object.

Properties
Name — Requirements set name
character vector

Name of the requirements set, specified as a character vector.

Filename — Requirements set file path
character vector

The file path of the requirements set, specified as a character vector.

 slreq.ReqSet class

2-17

Revision — Requirements set revision number
scalar

Requirements set revision number, specified as a scalar.

CreatedBy — Requirements set creator
character vector

The name of the individual or organization who created the requirements set.

CreatedOn — Date requirements set was created
datetime value

The date the requirements set was created, specified as a datetime value. The software
automatically populates this property.

ModifiedBy — Requirements set modifier
character vector

The name of the individual or organization who last modified the requirements set.

ModifiedOn — Date requirements set was modified
datetime value

The date the requirements set was last modified, specified as a datetime value. The software
automatically populates this property.

Description — Requirements set description
character vector

Requirements set description text, specified as a character vector.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the requirements set has unsaved changes. 0 for no unsaved changes, and 1 for unsaved
changes.

CustomAttributeNames — Custom attributes associated with the requirements set
cell array of character vectors

Requirements set custom attribute names, specified as a cell array of character vectors.

2 Classes

2-18

Methods
addAttribute Add custom attribute to requirement set
addJustification Add justifications to requirement set
close Close a requirements set
createReferences Create read-only references to requirement items in third-party

documents
deleteAttribute Delete custom attribute from requirement set
find Find requirements in requirements set that have matching attribute

values
getImplementationStatus Query requirement set implementation status summary
getVerificationStatus Query requirement set verification status summary
importFromDocument Import editable requirements from external documents
inspectAttribute Get information about requirement set custom attribute
save Save a requirements set
updateAttribute Update information for requirement set custom attribute
updateImplementationStatus Update requirement set implementation status summary
updateVerificationStatus Update requirement set verification status summary

Examples
Create and Instantiate a Requirements Set Object

% Create a new requirements set
rs = slreq.new('Design_Requirements');

% Save and close the requirements set - saving creates a .slreqx file
save(rs);
close(rs);

% Load an existing requirements set
rs1 = slreq.load('Design_Requirements');

% Open the requirements set in the Requirements Editor
slreq.open(rs1);

See Also
slreq.Link | slreq.LinkSet | slreq.Reference | slreq.Requirement

Introduced in R2018a

 slreq.ReqSet class

2-19

slreq.Requirement class
Package: slreq

Work with Requirement objects

Description
Instances of slreq.Requirement are Requirement objects that you manage solely inside Simulink
Requirements and that do not have a persistent association with artifacts managed by external
applications. Requirement objects can exist only within a requirements set.

Creation
req = find(rs, 'PropertyName', PropertyValue) finds and returns a requirement req in
the requirements set rs with additional requirement properties specified by PropertyName and
PropertyValue.

req = add(rs, 'PropertyName', PropertyValue) adds a requirement req to the requirement
set rs with additional requirement properties specified by PropertyName and PropertyValue.

Input Arguments

rs — Requirements set object
slreq.ReqSet object

Requirements set, specified as an slreq.ReqSet object.

Output Arguments

req — Requirement object
slreq.Requirement object

Handle to a requirement, returned as an slreq.Requirement object.

Properties
Type — Requirement type
character vector

Requirement type. For more information, see “Requirement Types”.

Id — Requirement custom ID
character vector

Custom ID of the requirement, returned as a character vector. You cannot use spaces and '#' in
custom IDs.

Summary — Requirement summary
character vector

2 Classes

2-20

Requirement summary text, specified as a one-line, plain text character vector.

Keywords — Requirement keywords
character array

Requirement keywords, specified as character array.

Description — Requirement description
character vector

Requirement description text, specified as a multiline character vector.

Rationale — Requirement rationale
character vector

Requirement rationale text, specified as a multiline character vector.

SID — Requirement Session Independent Identifier
character vector

The Session Independent Identifier corresponding to the requirement.

CreatedOn — Date requirement was created
datetime value

The date on which the requirement was created, specified as a datetime value. The software
populates this property.

CreatedBy — Requirement creator
character vector

The name of the individual or organization who created the requirement.

ModifiedOn — Date requirement was modified
datetime value

The date on which the requirement was last modified, specified as a datetime value. The software
populates this property.

ModifiedBy — Requirement modifier
character vector

The name of the individual or organization who last modified the requirement.

FileRevision — Requirement revision number
scalar

Requirement revision number, specified as a scalar.

Dirty — Unsaved changes indicator
0 | 1

Indicates if the requirement has unsaved changes. 0 for no unsaved changes and 1 for unsaved
changes.

 slreq.Requirement class

2-21

Comments — Requirement comments
structure array

The comments that are attached with the requirement, returned as a structure.

Index — Requirement index
character array

The index of the requirement, returned as a character array.

Methods
add Add requirement to requirements set
children Find child requirements of a requirement
copy Copy and paste requirement
demote Demote requirements
find Find children of parent requirements
getAttribute Get requirement custom attributes
getImplementationStatus Query requirement implementation status summary
getVerificationStatus Query requirement verification status summary
isJustifiedFor Check if requirement is justified
justifyImplementation Justify requirements for implementation
justifyVerification Justify requirements for verification
move Move requirement in hierarchy
moveDown Move requirement down in hierarchy
moveUp Move requirement up in hierarchy
parent Find parent item of requirement
promote Promote requirements
remove Remove requirement from requirement set
reqSet Return parent requirements set
setAttribute Set requirement custom attributes

Examples
Find a Requirement in a Requirements Set

% Find a requirement with ID 77 in a requirements set rs
req = find(rs, 'Type', 'Requirement', 'ID', '77');

req =

 Requirement with properties:

 Id: '77'
 Summary: 'Test Spec'
 Keywords: [0×0 char]
 Description: ''

2 Classes

2-22

 Rationale: ''
 SID: 80
 CreatedBy: 'John Doe'
 CreatedOn: 05-Oct-2007 16:09:38
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 21-Dec-2016 11:10:05
 Comments: [0×0 struct]

See Also
slreq.Link | slreq.LinkSet | slreq.Reference | slreq.ReqSet

Introduced in R2018a

 slreq.Requirement class

2-23

slreq.verification.services.TAP class
Package: slreq.verification.services

Work with external results sources

Description
Instances of the slreq.verification.services.TAP provides utilities for interpreting TAP (Test
Anything Protocol) result files for verification.

Creation
Service objects used in the custom logic of GetResultFcn to script up result fetching logic.

tapService = slreq.verification.services.TAP() directs the result fetching logic to the
TAP file.

Output Arguments

tapService — services used for TAP files
character vector

Service used in GetResultFcn to script up result fetching logic

Methods
The output is result that is an instance of the tapService object. For the resultFile with
testID, the GetResultFcn function returns the result for that testID:

result = tapService.getResult(testID, resultFile);

The GetResultFcn fetches the result for the testID with test points in the resultFile using:

result = tapService.getAllResults(resultFile);

Example
Service Usage in a GetResultFcn of Link Type

 function result = GetResultFcn(link)
 testID = link.destination.id;
 testFile = link.destination.artifact;
 resultFile = getResultFile(testFile);

 if ~isempty(resultFile) && isfile(resultFile)
 tapService = slreq.verification.services.TAP();
 result = tapService.getResult(testID, resultFile);
 else
 result.status = slreq.verification.Status.Unknown;

2 Classes

2-24

 end
end

See Also
“Link Type Properties” | slreq.Link

Introduced in R2020a

 slreq.verification.services.TAP class

2-25

slreq.verification.services.JUnit class
Package: slreq.verification.services

Work with external results sources

Description
Instances of the slreq.verification.services.JUnit provides utilities for interpreting JUnit
result files for verification.

Creation
JUnitService = slreq.verification.services.JUnit() directs the result fetching logic to
the XML file.

Output Arguments

JUnitService — Services used for XML files
character vector

Services used in GetResultFcn to script up result fetching logic

Methods
The output is result that is an instance of the JUnitService object. For the resultFile with
testID, the GetResultFcn function returns the result for that testID:

result = JUnitService.getResult(testID, resultFile);

The GetResultFcn fetches the result for the testID with test points in the resultFile using:

result = JUnitService.getAllResults(resultFile);

Example
Service Usage in a GetResultFcn of Link Type

 function result = GetResultFcn(link)
 testID = link.destination.id;
 testFile = link.destination.artifact;
 resultFile = getResultFile(testFile);

 if ~isempty(resultFile) && isfile(resultFile)
 JUnitService = slreq.verification.services.JUnit();
 result = JUnitService.getResult(testID, resultFile);
 else
 result.status = slreq.verification.Status.Unknown;
 end
end

2 Classes

2-26

See Also
“Link Type Properties” | slreq.Link

Introduced in R2020a

 slreq.verification.services.JUnit class

2-27

Methods

3

add
Class: slreq.Justification
Package: slreq

Add child justification

Syntax
childJustification = add(jt, 'PropertyName', PropertyValue)

Description
childJustification = add(jt, 'PropertyName', PropertyValue) adds a child
justification childJustification to a justification object jt with additional properties specified by
PropertyName and PropertyValue.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
childJustification — Requirement justification
slreq.Justification object

The child justification that was added, returned as an slreq.Justification object.

Examples
Add a Child Justification to a Parent Justification

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Add a justification object to the requirement set
just1 = addJustification(rs, 'Id', 'J1', ...
'Summary', 'Non-functional requirement justification');

% Add a child justification to the justification just1
childJust1 = add(just1, 'Id', 'J1.1', ...
'Summary', 'Justification for non-functional requirement')

childJust1 =

 Justification with properties:

 Id: 'J1.1'

3 Methods

3-2

 Summary: 'Justification for non-functional requirement'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 25-Aug-2017 11:21:29
 CreatedBy: 'John Doe'
 ModifiedBy: 'Jane Doe'
 SID: 11
 FileRevision: 2
 ModifiedOn: 25-Aug-2017 14:00:29
 Dirty: 0
 Comments: [0×0 struct]

See Also
children | remove

Introduced in R2018b

 add

3-3

children
Class: slreq.Justification
Package: slreq

Find children justifications

Syntax
childJusts = children(jt)

Description
childJusts = children(jt) returns the child justifications childJusts of the
slreq.Justification object jt.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
childJusts — Child justifications
slreq.Justification object | slreq.Justification object array

The child justifications belonging to the justification jt, returned as slreq.Justification objects.

Examples
Find Child Justifications

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×20 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID

3 Methods

3-4

 FileRevision
 ModifiedOn
 Dirty
 Comments

jt1 = allJusts(1);

% Find the children of jt1
childJusts = children(jt1)

childJusts =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

See Also
add | parent

Introduced in R2018b

 children

3-5

copy
Class: slreq.Justification
Package: slreq

Copy and paste justification

Syntax
tf = copy(just1,location,just2)

Description
tf = copy(just1,location,just2) copies justification just1 and pastes it under, before, or
after justification just2 depending on the location specified by location. The function returns 1 if
the copy and paste is executed.

Note If you copy a justification and paste it within the same requirement set, the copied justification
retains the same custom attribute values as the original. If the justification is pasted into a different
requirement set, the copied justification does not retain the custom attribute values.

Input Arguments
just1 — Justification to copy
slreq.Justification object

Justification to copy, specified as an slreq.Justification object.

location — Justification paste location
'under' | 'before' | 'after'

Paste location, specified as 'under', 'before', or 'after'.

just2 — Justification to paste original justification near
slreq.Justification object

Justification to paste original justification near, specified as an slreq.Justification object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 0 or 1 of data type logical.

ExamplesCopy and Paste a Justification
This example shows how to copy a justification and paste it under, before, or after another
justification.

3 Methods

3-6

Load the crs_req_justs requirement file, which describes a cruise control system, and assign it to
a variable. Find two justifications by index. The first justification will be copied and pasted in relation
to the second justification.

rs = slreq.load('crs_req_justs');
jt1 = find(rs,'Type','Justification','Index','5.1');
jt2 = find(rs,'Type','Justification','Index','5.2');

Paste Under a Justification

Copy and paste the first justification, jt1, under the second justification, jt2. The first justification
becomes the last child justification of jt2, which you can verify by finding the children of jt2 and
comparing the summary of the last child and jt1.

tf = copy(jt1,'under',jt2);
childJusts = children(jt2);
lastChild = childJusts(numel(childJusts));
lastChild.Summary

ans =
'Non-functional requirement'

jt1.Summary

ans =
'Non-functional requirement'

Paste Before a Justification

Copy and paste the first justification, jt1, before the second justification, jt2. Confirm that the
justification was pasted before jt2 by checking the index and summary. The old index of jt2 was
5.2. The index of the pasted justification should be 5.2 and the index of jt2 should be 5.3.

tf = copy(jt1,'before',jt2);
pastedJust1 = find(rs,'Type','Justification','Index','5.2');
pastedJust1.Summary

ans =
'Non-functional requirement'

jt2.Index

ans =
'5.3'

Paste After a Justification

Copy and paste the first justification, jt1, after the second justification, jt2. Confirm that the
justification was pasted after jt2 by checking the index. The index of jt2 is 5.3 and should not
change, which means the index of the pasted justification should be 5.4.

tf = copy(jt1,'after',jt2);
pastedJust2 = find(rs,'Type','Justification','Index','5.4');
pastedJust2.Summary

ans =
'Non-functional requirement'

jt2.Index

 copy

3-7

ans =
'5.3'

Cleanup

Clear the open requirement set and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
move | moveDown | moveUp | slreq.Justification

Introduced in R2020b

3 Methods

3-8

demote
Class: slreq.Justification
Package: slreq

Demote justifications

Syntax
demote(jt)

Description
demote(jt) demotes the slreq.Justification object jt down one level in the hierarchy.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Examples
Demote a Justification

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×20 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

jt1 = allJusts(1);

% Find the children of jt1

 demote

3-9

childJusts = children(jt1)

childJusts =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Demote the first child of jt1
demotedJustification = demote(childJusts(1));

% Find the parent of demotedJustification
parentJustification = parent(demotedJustification)

parentJustification =

 Justification with properties:

 Id: 'J1.1'
 Summary: 'Justifications'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 27-Feb-2014 10:15:38
 CreatedBy: 'Jane Doe'
 ModifiedBy: 'John Doe'
 SID: 34
 FileRevision: 21
 ModifiedOn: 02-Aug-2017 13:49:40
 Dirty: 1
 Comments: [0×0 struct]

See Also
children | parent | promote

Introduced in R2018b

3 Methods

3-10

find
Class: slreq.Justification
Package: slreq

Find children of parent justification

Syntax
childJusts = find(jt,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
childJusts = find(jt,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) finds and returns child justifications childJusts of the parent justification jt
that match the properties specified by PropertyName and PropertyValue.

Input Arguments
jt — Justification
slreq.Justification object

Justification, specified as an slreq.Justification object.

PropertyName — Justification property
character vector

Justification property name, specified as a character vector. See the valid property names in the
properties section of slreq.Justification.
Example: 'Type','Keywords','SID'

PropertyValue — Justification property value
character vector | character array | datetime value | scalar | logical | structure array

Justification property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The data type depends on the specified propertyName. See the valid
property values in the properties section of slreq.Justification.

Output Arguments
childJusts — Child justifications
slreq.Justification object | slreq.Justification object array

Child justifications, returned as slreq.Justification objects.

Examples

 find

3-11

Find Child Justifications

This example shows how to find child justifications that match property values.

Load the crs_req_justs requirement file, which describes a cruise control system, and assign it to
a variable. Find the justification with index 5, as this justification has child justifications.

rs = slreq.load('crs_req_justs');
parentReq = find(rs,'Type','Justification','Index','5');

Find all the child justifications of parentReq that were modified in revision 1.

childReqs1 = find(parentReq,'FileRevision',1)

childReqs1=1×6 object
 1x6 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Find all the child justifications of parentReq that were modified in revision 1 and whose summary
says Non-functional requirement.

childReqs2 = find(parentReq,'FileRevision',1,'Summary','Non-functional requirement')

childReqs2 =
 Justification with properties:

 Id: '#72'
 Summary: 'Non-functional requirement'
 Description: '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">...'
 Keywords: {}
 Rationale: ''
 CreatedOn: 27-Feb-2017 10:34:22
 CreatedBy: 'itoy'
 ModifiedBy: 'asriram'
 SID: 72
 FileRevision: 1
 ModifiedOn: 03-Aug-2017 17:14:44
 Dirty: 0
 Comments: [0x0 struct]
 Index: '5.1'

3 Methods

3-12

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
slreq.Justification | slreq.ReqSet | slreq.find

Introduced in R2018b

 find

3-13

getAttribute
Class: slreq.Justification
Package: slreq

Get justification attributes

Syntax
val = getAttribute(jt, propertyName)

Description
val = getAttribute(jt, propertyName) gets a justification property propertyName of the
justification jt.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

propertyName — Justification property
character vector

Justification property name.
Example: 'SID', 'CreatedOn', 'Summary'

Examples
Get Justification Attributes

% Load a requirement set file and get the handle to one justification
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
jt1 = find(rs, 'Type', 'Justification', 'ID', 'J3.5');

% Get the Summary of jt1
summaryJt1 = getAttribute(jt1, 'Summary')

summaryJt1 =

 'Requirement Justification'

See Also
setAttribute

Introduced in R2018b

3 Methods

3-14

isHierarchical
Class: slreq.Justification
Package: slreq

Check if justification is hierarchical

Syntax
tf = isHierarchical(jt)

Description
tf = isHierarchical(jt) checks if the slreq.Justification object jt is part of a hierarchy
of justifications and returns the Boolean tf.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
tf — Hierarchical justification status
true | false

The hierarchical justification status of the slreq.Justification object, returned as a Boolean.

Examples
Query Hierarchical Justification Status

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×9 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy

 isHierarchical

3-15

 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Check if the first justification in allJusts is hierarchically justified
tf = isHierarchical(allJusts(1))

tf =

 logical

 0

See Also
children | setHierarchical

Introduced in R2018b

3 Methods

3-16

move
Class: slreq.Justification
Package: slreq

Move justification in hierarchy

Syntax
tf = move(jt1,location,jt2)

Description
tf = move(jt1,location,jt2) moves justification jt1 under, before, or after justification jt2
depending on the location specified by location. The function returns 1 if the move is executed
without error.

Input Arguments
jt1 — Justification to move
slreq.Justification object

Justification to move, specified as an slreq.Justification object.

location — Justification move location
'under' | 'before' | 'after'

Justification move location, specified as 'under', 'before', or 'after'.

jt2 — Justification
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 0 or 1 of data type logical.

Examples

Move a Justification

This example shows how to move a justification under, before, or after another justification.

 move

3-17

Load the crs_req_justsrequirement file, which describes a cruise control system, and assign it to a
variable. Find two justifications by index. The first justification will be moved in relation to the second
justification.

rs = slreq.load('crs_req_justs');
jt1 = find(rs,'Type','Justification','Index','5.1');
jt2 = find(rs,'Type','Justification','Index','5.2');

Move Under a Justification

Move the first justification, jt1, under the second justification, jt2. The first justification becomes
the last child justification of justification jt2, and jt2 moves up one in the hierarchy, which you can
verify by checking the index of jt1 and jt2. The old indices of jt1 and jt2 were 5.1 and 5.2,
respectively.

tf = move(jt1,'under',jt2);
jt1.Index

ans =
'5.1.3'

jt2.Index

ans =
'5.1'

Move Before a Justification

Move the first justification, jt1, before the second justification, jt2. Confirm that the justification
was moved correctly by checking the indices of jt1 and jt2. The indices of jt1 and jt2 are now
the same as they were originally: 5.1 and 5.2, respectively.

tf = move(jt1,'before',jt2);
jt1.Index

ans =
'5.1'

jt2.Index

ans =
'5.2'

Move After a Justification

Move the first justification, jt1, after the second justification, jt2. When you move justification jt1
down in the hierarchy, justification jt2 also moves up, which you can verify by checking the indices
of jt1 and jt2.

tf = move(jt1,'after',jt2);
jt1.Index

ans =
'5.2'

jt2.Index

ans =
'5.1'

3 Methods

3-18

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
copy | moveDown | moveUp | slreq.Justification

Introduced in R2020b

 move

3-19

moveDown
Class: slreq.Justification
Package: slreq

Move justification down in hierarchy

Syntax
tf = moveDown(jt)

Description
tf = moveDown(jt) moves the justification jt down one spot in the hierarchy, and returns 1 if the
move is executed without error. The justification jt cannot be moved to a new level in the hierarchy.

Input Arguments
jt — Justification
slreq.Justification

Justification, specified as an slreq.Justification object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 0 or 1 of data type logical.

Examples

Move a Justification Down

This example shows how to move a justification down in the hierarchy.

Load the crs_req_justs requirement file, which describes a cruise control system, and assign it to
a variable. Find the justification with index 5.3.

rs = slreq.load('crs_req_justs');
jt1 = find(rs,'Type','Justification','Index','5.3');

Move the justification down one spot in the hierarchy. Confirm the move by checking the success
status, tf1, and the index.

tf1 = moveDown(jt1)

tf1 = logical
 1

3 Methods

3-20

jt1.Index

ans =
'5.4'

Find the justification with index 5.2.2. This justification is already at the bottom of its level in the
hierarchy and cannot be moved down further, which you can verify by trying to move it down.
Confirm that the move failed by checking the success status, tf2, and the index.

jt2 = find(rs,'Type','Justification','Index','5.2.2');
tf2 = moveDown(jt2)

tf2 = logical
 0

jt2.Index

ans =
'5.2.2'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
copy | move | moveUp | slreq.Justification

Introduced in R2020b

 moveDown

3-21

moveUp
Class: slreq.Justification
Package: slreq

Move justification up in hierarchy

Syntax
tf = moveUp(jt)

Description
tf = moveUp(jt) moves the justification jt up one spot in the hierarchy, and returns 1 if the move
executes without error. The justification jt cannot be moved to a new level in the hierarchy.

Input Arguments
jt — Justification
slreq.Justification

Justification, specified as an slreq.Justification object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 0 or 1 of data type logical.

Examples

Move a Justification Up

This example shows how to move a justification up in the hierarchy.

Load the crs_req_justs requirement file, which describes a cruise control system, and assign it to
a variable. Find the justification with index 5.3.

rs = slreq.load('crs_req_justs');
jt1 = find(rs,'Type','Justification','Index','5.3');

Move the justification up one spot in the hierarchy. Confirm the move by checking the success status,
tf1, and the index.

tf1 = moveUp(jt1)

tf1 = logical
 1

3 Methods

3-22

jt1.Index

ans =
'5.2'

Find the justification with index 5.1. This justification is already at the top of its level in the
hierarchy and cannot be moved up further, which you can verify by trying to move it up. Confirm that
the move failed by checking the success status, tf2, and the index.

jt2 = find(rs,'Type','Justification','Index','5.1');
tf2 = moveUp(jt2)

tf2 = logical
 0

jt2.Index

ans =
'5.1'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
copy | move | moveDown | slreq.Justification

Introduced in R2020b

 moveUp

3-23

parent
Class: slreq.Justification
Package: slreq

Find parent item of justification

Syntax
parentObj = parent(jt)

Description
parentObj = parent(jt) returns the parent object parentObj of the slreq.Justification
object jt.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
parentObj — Parent object
slreq.Justification object | slreq.ReqSet object

The parent of the justification jt, returned as an slreq.Justification object or as an
slreq.ReqSet object.

Examples
Find Parent Justification

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
myJustifications = find(rs, 'Type', 'Justification')

myJustifications =

 1×13 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy

3 Methods

3-24

 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Find the parent of the first justification object
parentJust1 = parent(myJustifications(1))

parentJust1 =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

% Find the parent of the third justification object
parentJust3 = parent(myJustifications(3))

parentJust3 =

 Justification with properties:

 Id: 'J1'
 Summary: 'Justifications'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 27-Feb-2014 10:15:38
 CreatedBy: 'Jane Doe'
 ModifiedBy: 'John Doe'
 SID: 35
 FileRevision: 11
 ModifiedOn: 02-Aug-2017 13:49:40
 Dirty: 1
 Comments: [0×0 struct]

See Also
children | demote | promote

Introduced in R2018b

 parent

3-25

promote
Class: slreq.Justification
Package: slreq

Promote justifications

Syntax
promote(jt)

Description
promote(jt) promotes the slreq.Justification object jt up one level in the hierarchy.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Examples
Promote a Justification

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×20 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

jt1 = allJusts(1);

% Find the children of jt1

3 Methods

3-26

childJusts = children(jt1)

childJusts =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Promote the first child of jt1
promote(childJusts(1));

% Find the parent of childJusts(1)
parentJustification = parent(childJusts(1))

parentJustification =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 81
 Dirty: 1
 CustomAttributeNames: {}

See Also
children | demote | parent

Introduced in R2018b

 promote

3-27

remove
Class: slreq.Justification
Package: slreq

Remove justification items

Syntax
count = remove(jt, 'PropertyName', PropertyValue)

Description
count = remove(jt, 'PropertyName', PropertyValue) removes child justification items
belonging to the parent justification jt with additional properties specified by PropertyName and
PropertyValue. Returns the number of items removed as count.

Input Arguments
jt — Parent justification object
slreq.Justification object

Parent justification, specified as an slreq.Justification object.

Output Arguments
count — Removed justification count
double

Number of justification items removed, returned as a double.

Examples
Remove Justification Items

Load a requirement set file.

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

Find justification objects in the requirement set.

myJustifications = find(rs, 'Type', 'Justification')

myJustifications =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords

3 Methods

3-28

 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

Remove one of the justification objects that was created by Jane Doe.

count = remove(myJustifications(1), 'CreatedBy', 'Jane Doe')

count =

 1

See Also
add

Introduced in R2018b

 remove

3-29

reqSet
Class: slreq.Justification
Package: slreq

Return parent requirement set

Syntax
rsout = reqSet(jt)

Description
rsout = reqSet(jt) returns the parent requirement set rsout. The justification jt belongs to
rsout.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

Output Arguments
rsout — Parent requirement set
slreq.ReqSet object

The parent requirement set of the justification jt, returned as an slreq.ReqSet object.

Examples
Query Requirements Set Information

% Load a new requirement set file and select one justification
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allJustifications = find(rs, 'Type', 'Justification');
jt = allJustifications(1);

% Query which requirement set jt belongs to
reqSet(jt)

ans =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 65
 Dirty: 0

3 Methods

3-30

 CustomAttributeNames: {}
 CreatedBy: 'John Doe'
 CreatedOn: 17-Dec-2016 10:02:30
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 01-May-2016 11:20:21

See Also
parent | promote

Introduced in R2018b

 reqSet

3-31

setAttribute
Class: slreq.Justification
Package: slreq

Set justification attributes

Syntax
setAttribute(jt, propertyName, propertyValue)

Description
setAttribute(jt, propertyName, propertyValue) sets a justification property.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

propertyName — Justification property
character vector

Justification property name.
Example: 'SID', 'CreatedOn', 'Summary'

propertyValue — Justification property value
character vector

Justification property value.
Example: 'Test Justification', 'J4.5.4'

Examples
Set Justification Attributes

% Load a requirement set file and get the handle to one justification
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
jt1 = find(rs, 'Type', 'Justification', 'ID', 'J2.1');

% Set the Summary of req1
setAttribute(jt1, 'Summary', 'Controller Requirement Justification');

jt1

jt1 =

 Justification with properties:

3 Methods

3-32

 Id: 'J2.1'
 Summary: 'Controller Requirement Justification'
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 27-Feb-2014 10:15:38
 CreatedBy: 'Jane Doe'
 ModifiedBy: 'John Doe'
 SID: 37
 FileRevision: 25
 ModifiedOn: 02-Aug-2017 13:49:40
 Dirty: 1
 Comments: [0×0 struct]

See Also
getAttribute

Introduced in R2018b

 setAttribute

3-33

setHierarchical
Class: slreq.Justification
Package: slreq

Change hierarchical justification status

Syntax
setHierarchical(jt, tf)

Description
setHierarchical(jt, tf) changes the hierarchical justification status of the
slreq.Justification object jt as specified by the Boolean tf.

Input Arguments
jt — Justification object
slreq.Justification object

Justification, specified as an slreq.Justification object.

tf — Hierarchical justification status flag
true | false

The hierarchical justification status of the slreq.Justification object, specified as a Boolean.

Examples
Change Hierarchical Justification Status

% Load a requirement set file and find justification objects
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

allJusts = find(rs, 'Type', 'Justification')

allJusts =

 1×10 Justification array with properties:

 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn

3 Methods

3-34

 Dirty
 Comments

% Check if the first justification in allJusts is hierarchically justified
tf = isHierarchical(allJusts(1))

tf =

 logical

 0

% Change the first justification in allJusts to be hierarchically justified
setHierarchical(allJusts(1), true);

See Also
isHierarchical | parent

Introduced in R2018b

 setHierarchical

3-35

destination
Class: slreq.Link
Package: slreq

Get link destination artifact

Syntax
dest = destination(myLink)

Description
dest = destination(myLink) returns the destination artifact dest of the link myLink.

Input Arguments
myLink — Link object
slreq.Link object

Link, specified as an slreq.Link object.

Output Arguments
dest — Destination artifact
struct

The link destination artifact, returned as a MATLAB structure.

Examples
Get Link Destination

% Load a requirement set file and select one link
rs = slreq.load('C:\MATLAB\My_Req_Set.slreqx');
allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);
allIncomingLinks = inLinks(req);
myLink = allIncomingLinks(1);

% Get link destination
myDestination = destination(myLink)

myDestination =

 struct with fields:

 reqSet: 'My_Req_Set'
 domain: 'linktype_rmi_slreq'
 summary: 'My Requirement'
 details: ''

3 Methods

3-36

 id: ''
 sid: 12

See Also
linkSet | slreq.Link | source

Introduced in R2018a

 destination

3-37

getAttribute
Class: slreq.Link
Package: slreq

Get link custom attributes

Syntax
val = getAttribute(myLink,name)

Description
val = getAttribute(myLink,name) returns the custom attribute value of the custom attribute
specified by name for the link myLink.

Input Arguments
myLink — Link
slreq.Link object

Link, specified as an slreq.Link object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

Output Arguments
val — Custom attribute value
character array | double | logical | datetime

Custom attribute value, returned as a character array, double, logical, or datetime. The data
type depends on the custom attribute type.

Examples

Get Link Attribute Value

This example shows how to get the attribute value of a specified custom attribute for a link.

Load the crs_req requirement files, which contain links for a cruise control system. Find the link
set.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

3 Methods

3-38

Create a links array containing all the links from link set ls. Get one link from the array. Get the
attribute value of the custom attribute called Target Speed Change, which tracks whether linked
requirements are related to incrementing or decrementing the speed.

linksArray = find(ls);
myLink = linksArray(7);
val = getAttribute(myLink,'Target Speed Change')

val =
'Decrement'

Cleanup

Clean up commands. Clear the open requirement sets and close the open models without saving the
changes.

slreq.clear;
bdclose all;

See Also
setAttribute | slreq.Link | slreq.LinkSet

Topics
“Manage Custom Attributes for Links by Using the Simulink® Requirements™ API”

Introduced in R2020b

 getAttribute

3-39

isResolved
Class: slreq.Link
Package: slreq

Check if the link is resolved

Syntax
tf = isResolved(myLink)

Description
tf = isResolved(myLink) checks if the link myLink is resolved.

A resolved link has an available source and destination. If a link source or destination is not available,
the link is unresolved. For example:

• A link becomes unresolved if you delete a linked block from a model.
• A link is unresolved if a source or destination file, such as a Simulink Test test file, is not loaded in

memory.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

Output Arguments
tf — Link resolution status
0 | 1

The resolution status of the slreq.Link object, returned as a Boolean.

Examples
Check if Link is Resolved

isResolvedDestination(myLink)

ans =

 logical

 1

isResolvedSource(myLink)

3 Methods

3-40

ans =

 logical

 0

isResolved(myLink)

ans =

 logical

 0

See Also
isResolvedDestination | isResolvedSource | setDestination | setSource

Introduced in R2019a

 isResolved

3-41

isResolvedDestination
Class: slreq.Link
Package: slreq

Check if the link destination is resolved

Syntax
tf = isResolvedDestination(myLink)

Description
tf = isResolvedDestination(myLink) checks if the destination of the link myLink is resolved.

A resolved link has an available source and destination. If a link source or destination is not available,
the link is unresolved. For example:

• A link becomes unresolved if you delete a linked block from a model.
• A link is unresolved if a source or destination file, such as a Simulink Test test file, is not loaded in

memory.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

Output Arguments
tf — Link destination resolution status
0 | 1

The destination resolution status of the slreq.Link object, returned as a Boolean.

Examples
Check if Link Destination is Resolved
isResolvedDestination(myLink)

ans =

 logical

 1

See Also
isResolved | isResolvedSource | setDestination

3 Methods

3-42

Introduced in R2019a

 isResolvedDestination

3-43

isResolvedSource
Class: slreq.Link
Package: slreq

Check if the link source is resolved

Syntax
tf = isResolvedSource(myLink)

Description
tf = isResolvedSource(myLink) checks if the source of the link myLink is resolved.

A resolved link has an available source and destination. If a link source or destination is not available,
the link is unresolved. For example:

• A link becomes unresolved if you delete a linked block from a model.
• A link is unresolved if a source or destination file, such as a Simulink Test test file, is not loaded in

memory.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

Output Arguments
tf — Link source resolution status
0 | 1

The source resolution status of the slreq.Link object, returned as a Boolean.

Examples
Check if Link Source is Resolved
isResolved(myLink)

ans =

 logical

 0

See Also
isResolved | isResolvedDestination | setSource

3 Methods

3-44

Introduced in R2019a

 isResolvedSource

3-45

linkSet
Class: slreq.Link
Package: slreq

Return parent link set

Syntax
lks = linkSet(myLink)

Description
lks = linkSet(myLink) returns the parent link set lks to which the link myLink belongs.

Input Arguments
myLink — Link object
slreq.Link object

Link, specified as an slreq.Link object.

Output Arguments
lks — Parent link set
slreq.LinkSet object

Parent link set of the link myLink, returned as an slreq.LinkSet object.

Examples
Query Link Set Information

% Load a requirement set file and select one requirement
rs = slreq.load('C:\MATLAB\My_Req_Set.slreqx');
allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);

% Find the incoming links that belong to req
allInLinks = inLinks(req);

% Query link set information
myParentLinkSet = linkSet(allInLinks)

myParentLinkSet =

 LinkSet with properties:

 Description: ''
 Filename: 'model_controller.slmx'
 Artifact: 'model_controller.slx'

3 Methods

3-46

 Domain: 'linktype_rmi_simulink'
 Revision: 4
 Dirty: 0

See Also
destination | slreq.Link | source

Introduced in R2018a

 linkSet

3-47

remove
Class: slreq.Link
Package: slreq

Delete links

Syntax
remove(myLink)

Description
remove(myLink) deletes the link myLink.

Input Arguments
myLink — Link to delete
slreq.Link object

Link to delete, specified as an slreq.Link object.

Examples
Delete Link

% Delete a link myLink

remove(myLink);

See Also
slreq.Link

Introduced in R2019a

3 Methods

3-48

setAttribute
Class: slreq.Link
Package: slreq

Set link custom attributes

Syntax
setAttribute(myLink,name,value)

Description
setAttribute(myLink,name,value) sets the value specified by value of the custom attribute
specified by name for the link myLink.

Input Arguments
myLink — Link
slreq.Link object

Link, specified as an slreq.Link object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

value — Custom attribute value
character array | double | logical, | datetime

Custom attribute value, specified as a character array, double, logical or datetime. The data type
depends on the custom attribute type.

Examples

Set Link Attribute Value

This example shows how to set the attribute value of a specified custom attribute for a link.

Load the crs_req requirement files, which contain links for a cruise control system.

slreq.load('crs_req');
slreq.load('crs_req_func_spec');

Create a links array containing all links. Get one link from the array.

linksArray = slreq.find('Type','Link')

linksArray=1×12 object
 1x12 Link array with properties:

 setAttribute

3-49

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 SID
 Comments

lk = linksArray(1);

Custom attribute Target Speed Change, tracks whether the linked requirements are related to
incrementing or decrementing the speed, or not related at all. Set the value of Target Speed
Change to Unset for your link. Then use getAttribute to confirm that the value was set correctly.

setAttribute(lk,'Target Speed Change','Unset');
value = getAttribute(lk,'Target Speed Change')

value =
'Unset'

Cleanup

Clean up commands. Clear the open requirement sets and close the open models without saving the
changes.

slreq.clear;
bdclose all;

See Also
getAttribute | slreq.Link | slreq.LinkSet

Topics
“Manage Custom Attributes for Links by Using the Simulink® Requirements™ API”

Introduced in R2020b

3 Methods

3-50

setDestination
Class: slreq.Link
Package: slreq

Set requirement link destination

Syntax
setDestination(myLink,dest)

Description
setDestination(myLink,dest) sets the link destination artifact dest for the slreq.Link object
myLink.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

dest — Link destination
Simulink Requirements linkable item

Artifact to serve as the link destination, specified as a Simulink Requirements linkable item. See
“Linkable Items”.

Examples
Set Simulink Blocks as Link Destinations
% Set the Gain block in model myModel as the destination for link myLink
setDestination(myLink, 'myModel/Gain');

Set Simulink Test Objects as Link Destinations
% Create a Simulink Test test file, test suite, and a test case
myTestfile = sltest.testmanager.TestFile('my_test_file.mldatx');
myTestsuite = sltest.testmanager.TestSuite(myTestfile,'My Test Suite');
myTestcase = sltest.testmanager.TestCase(myTestsuite,'equivalence','Equivalence Test Case');

% Create a link from the test case to requirement myReq
myLink = slreq.createLink(req, myTestcase);

% Set the link destination to the test suite
setDestination(myLink, myTestsuite);

Set Stateflow Objects as Link Destinations
% Get Stateflow Root Handle
rt = sfroot;

 setDestination

3-51

% Find the state with the name 'Intermediate'
myState = rt.find('-isa', 'Stateflow.State', 'Name', 'Intermediate');

% Set the destination for link myLink to myState
setDestination(myLink, myState);

Set Simulink Data Dictionary Entries as Link Destinations

% Get handle to Simulink data dictionary entry
myDict = Simulink.data.dictionary.open('myDictionary.sldd');
dataSectObj = getSection(myDict,'Design Data');
myDictEntry = getEntry(dataSectObj,'myEntry');

% Set the destination for link myLink to myDictEntry
setDestination(myLink, myDictEntry);

See Also
setSource

Introduced in R2019b

3 Methods

3-52

setSource
Class: slreq.Link
Package: slreq

Set requirement link source

Syntax
setSource(myLink,src)

Description
setSource(myLink,src) sets the link source artifact src for the slreq.Link object myLink. You
can set a link source only to a linkable artifact that belongs to the original link source artifact.

Input Arguments
myLink — Link object
slreq.Link object

Handle to a link, specified as an slreq.Link object.

src — Link source
Simulink Requirements linkable artifact

Artifact to serve as the link source, specified as a Simulink Requirements linkable artifact. See
“Linkable Items”.

Examples
Set Simulink Blocks as Link Sources
% Set the Gain block in model myModel as the source for link myLink
setSource(myLink, 'myModel/Gain');

Set Simulink Test Objects as Link Source
% Create a test file, test suite, and a test case
myTestfile = sltest.testmanager.TestFile('my_test_file.mldatx');
myTestsuite = sltest.testmanager.TestSuite(myTestfile,'My Test Suite');
myTestcase = sltest.testmanager.TestCase(myTestsuite,'equivalence','Equivalence Test Case');

% Create a link from the test case to requirement myReq
myLink = slreq.createLink(myTestcase, req);

% Set the link source to the test suite
setSource(myLink, myTestsuite);

Set Stateflow Objects as Link Sources
% Get Stateflow Root Handle
rt = sfroot;

 setSource

3-53

% Find the state with the name 'Intermediate'
myState = rt.find('-isa', 'Stateflow.State', 'Name', 'Intermediate');

% Set the source for link myLink to myState
setSource(myLink, myState);

Set Simulink Data Dictionary Entries as Link Sources

% Get handle to Simulink data dictionary entry
myDict = Simulink.data.dictionary.open('myDictionary.sldd');
dataSectObj = getSection(myDict,'Design Data');
myDictEntry = getEntry(dataSectObj,'myEntry');

% Set the source for link myLink to myDictEntry
setSource(myLink, myDictEntry);

Change a Link Source to a Different Source Artifact

% Get destination of link link_1
dest = destination(link_1);

% Create a new link, link_2, with source newSrc and destination dest
link_2 = slreq.createLink(newSrc, dest);

% Copy link properties
link_2.Description = link_1.Description;
link_2.Rationale = link_1.Rationale;
link_2.Keywords = link_1.Keywords;
comments = link_1.Comments;
for i = 1:length(comments)
 link_2.addComment(comments(i).Text);
end

% Delete link_1
remove(link_1);

See Also
setDestination

Introduced in R2019b

3 Methods

3-54

source
Class: slreq.Link
Package: slreq

Get link source artifact

Syntax
src = source(myLink)

Description
src = source(myLink) returns the source artifact src of the link myLink.

Input Arguments
myLink — Link object
slreq.Link object

Link, specified as an slreq.Link object.

Output Arguments
src — Source artifact
struct

The link source artifact, returned as a MATLAB structure.

Examples
Get Link Source

% Load a requirement set file and select one link
rs = slreq.load('C:\MATLAB\My_Req_Set.slreqx');
allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);
allIncomingLinks = inLinks(req);
myLink = allIncomingLinks(1);

% Get link source
mySource = source(myLink)

mySource =

 struct with fields:

 domain: 'linktype_rmi_simulink'
 artifact: 'controller_model.slx'
 id: ':241'

 source

3-55

See Also
destination | linkSet | slreq.Link

Introduced in R2018a

3 Methods

3-56

addAttribute
Class: slreq.LinkSet
Package: slreq

Add custom attribute to link set

Syntax
addAttribute(myLinkSet,name,type)
addAttribute(myLinkSet,name,'Checkbox','DefaultValue',value)
addAttribute(myLinkSet,name,'Combobox','List',options)
addAttribute(myLinkSet, ___ ,'Description',descr)

Description
addAttribute(myLinkSet,name,type) adds a custom attribute with the name specified by name
and the custom attribute type specified by type to the link set myLinkSet.

addAttribute(myLinkSet,name,'Checkbox','DefaultValue',value) adds a Checkbox
custom attribute with the name specified by name and the default value specified by value to the link
set myLinkSet.

addAttribute(myLinkSet,name,'Combobox','List',options) adds a Combobox custom
attribute with name specified by name, and the list options specified by options to the link set
myLinkSet.

addAttribute(myLinkSet, ___ ,'Description',descr) adds a custom attribute with the name
specified by name, the type specified by type, and the description specified by descr to the link set
myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

type — Custom attribute type
'Edit' | 'Checkbox' | 'Combobox' | 'DateTime'

Custom attribute type, specified as a character array. The valid custom attribute types are 'Edit',
'Checkbox', 'Combobox', and 'DateTime'.

descr — Custom attribute description
character array

 addAttribute

3-57

Custom attribute description, specified as a character array.

value — Checkbox default value
false (default) | true

Checkbox default value, specified as a logical 1 (true) or 0 (false).

options — Combobox list options
cell array

Combobox list options, specified as a cell array. The list of options is valid only if 'Unset' is the first
entry. 'Unset' indicates that the user hasn't chosen an option from the combo box. If the list does
not start with 'Unset', it will be automatically appended as the first entry.
Example: {'Unset','A','B','C'}

Examples

Add Custom Attribute to Link Set

This example shows how to add a custom attribute to of all four available types, Edit, Checkbox,
Combobox, and DateTime, and how to add a custom attribute with a description.

Add an Edit Custom Attribute

Load the crs_req requirement files, which describes for a cruise control system. Find a link set in
the files and assign it to a variable.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

Add an Edit custom attribute. Confirm that the attribute added by using inspectAttribute.

addAttribute(ls,'MyEditAttribute','Edit');
atrb = inspectAttribute(ls,'MyEditAttribute')

atrb = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: ''

Add a Checkbox Custom Attribute

Add a Checkbox custom attribute with the default value true. Confirm that the attribute was added
successfully by using inspectAttribute.

addAttribute(ls,'MyCheckbox','Checkbox','DefaultValue',true);
atrb2 = inspectAttribute(ls,'MyCheckbox')

atrb2 = struct with fields:
 name: 'MyCheckbox'
 type: Checkbox
 description: ''
 default: 1

3 Methods

3-58

Add a Combobox Custom Attribute

Add a ComboBox custom attribute with the options Unset, A, B, and C. Confirm that the attribute was
added successfully by using inspectAttribute.

addAttribute(ls,'MyCombobox','Combobox','List',{'Unset','A','B','C'});
atrb3 = inspectAttribute(ls,'MyCombobox')

atrb3 = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''
 list: {'Unset' 'A' 'B' 'C'}

Add a DateTime Custom Attribute

Add a DateTime custom attribute. Confirm that the attribute was added successfully by using
inspectAttribute.

addAttribute(ls,'MyDateTime','DateTime');
atrb4 = inspectAttribute(ls,'MyDateTime')

atrb4 = struct with fields:
 name: 'MyDateTime'
 type: DateTime
 description: ''

Add a Custom Attribute with a Description

Add an Edit custom attribute. Add a description to the custom attribute. Confirm that the attribute
was added successfully by using inspectAttribute.

addAttribute(ls,'MyEditAttribute2','Edit','Description',...
 'You can enter text as the custom attribute value.');
atrb5 = inspectAttribute(ls,'MyEditAttribute2')

atrb5 = struct with fields:
 name: 'MyEditAttribute2'
 type: Edit
 description: 'You can enter text as the custom attribute value.'

Add a ComboBox custom attribute with the options Unset, A, B, and C. Add a description to the
custom attribute. Confirm that the attribute was added successfully by using inspectAttribute.

addAttribute(ls,'MyCombobox2','Combobox','List',{'Unset','A','B','C'},'Description',...
 'This combo box attribute has 4 options.');
atrb6 = inspectAttribute(ls,'MyCombobox2')

atrb6 = struct with fields:
 name: 'MyCombobox2'
 type: Combobox
 description: 'This combo box attribute has 4 options.'
 list: {'Unset' 'A' 'B' 'C'}

 addAttribute

3-59

Cleanup

Clean up commands. Clear the open requirement sets without saving changes and close the open
models without saving changes.

slreq.clear;
bdclose all;

See Also
deleteAttribute | inspectAttribute | slreq.LinkSet | updateAttribute

Topics
“Manage Custom Attributes for Links by Using the Simulink® Requirements™ API”

Introduced in R2020b

3 Methods

3-60

deleteAttribute
Class: slreq.LinkSet
Package: slreq

Delete custom attribute from link set

Syntax
deleteAttribute(myLinkSet,name,'Force',true)
deleteAttribute(myLinkSet,name,'Force',false)

Description
deleteAttribute(myLinkSet,name,'Force',true) deletes the custom attribute specified by
name from the link set myLinkSet, even if the custom attribute is used by links in the link set.

deleteAttribute(myLinkSet,name,'Force',false) deletes the custom attribute specified by
name from the link set myLinkSet only if the custom attribute is not used by links in the link set.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

Examples

Delete Custom Attribute

This example shows how to delete a custom attribute.

Load the crs_req requirement files, which contain links for a cruise control system. Find a link set in
the files.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

Delete the custom attribute named Target Speed Change from the link set. Because the Target
Speed Change attribute is used by links, it can only be deleted by setting Force to true.Confirm
that it was deleted successfully by accessing the CustomAttributeNames property for the link set.

deleteAttribute(ls,'Target Speed Change','Force',true)
atrb1 = ls.CustomAttributeNames

 deleteAttribute

3-61

atrb1 =

 0x0 empty cell array

Only Delete Custom Attribute if the Attribute is Unused

Add an Edit custom attribute to the link set. The attribute is unused because the value is not set for
any links. Confirm that it was added successfully by accessing the CustomAttributeNames property
for the link set.

addAttribute(ls,'MyEditAttribute','Edit')
atrb2 = ls.CustomAttributeNames

atrb2 = 1x1 cell array
 {'MyEditAttribute'}

If you set Force to false, you can delete the attribute only if the attribute is unused. If the attribute
is used by links, then an error will occur. Confirm the deletion by accessing the
CustomAttributeNames property for the link set.

deleteAttribute(ls,'MyEditAttribute','Force',false)
atrb3 = ls.CustomAttributeNames

atrb3 =

 0x0 empty cell array

Cleanup

Clean up commands. Clear the open requirement sets, link sets, and open models without saving
changes.

slreq.clear;
bdclose all;

See Also
addAttribute | inspectAttribute | slreq.LinkSet | updateAttribute

Topics
“Manage Custom Attributes for Links by Using the Simulink® Requirements™ API”

Introduced in R2020b

3 Methods

3-62

find
Class: slreq.LinkSet
Package: slreq

Find links in link set with matching attribute values

Syntax
myLinks = find(myLinkSet,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
myLinks = find(myLinkSet,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) finds and returns slreq.Link objects in the link set myLinkSet that match the
properties specified by PropertyName and PropertyValue.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

PropertyName — Link property
character vector

Link property name, specified as a character vector. See the valid property names in the properties
section of slreq.Link.
Example: 'Type','Keywords','SID'

PropertyValue — Link property value
character vector | character array | datetime value | scalar | logical | structure array

Link property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The data type depends on the specified propertyName. See the valid
property values in the properties section of slreq.Link.
Example: 'Type','Keywords','SID'

Output Arguments
myLinks — Link
slreq.Link object

Link or link array, specified as an slreq.Link object.

Examples

 find

3-63

Find a Link in a Requirement Set

This example shows how to find a link in a link set that matches the specified property value.

Load the crs_req requirement files, which contain links for a cruise control system. Define the link
set by assigning it to a variable.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

Find a link that matches the specified SID.

myLink = find(ls,'SID','3')

myLink =
 Link with properties:

 Type: 'Derive'
 Description: '#8: Set Switch Detection'
 Keywords: {}
 Rationale: ''
 CreatedOn: 20-May-2017 13:14:40
 CreatedBy: 'itoy'
 ModifiedOn: 09-Jun-2020 14:57:35
 ModifiedBy: 'ahoward'
 Revision: 5
 SID: 3
 Comments: [0x0 struct]

Find all links that are modified in the specified revision.

myLinks = find(ls,'Revision','7')

myLinks=1×8 object
 1x8 Link array with properties:

 Type
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedOn
 ModifiedBy
 Revision
 SID
 Comments

Find a link that matches the specified SID and revision.

myLink2 = find(ls,'SID','8','Revision','7')

myLink2 =
 Link with properties:

 Type: 'Derive'
 Description: '#12: Increment Short Switch Detection'

3 Methods

3-64

 Keywords: {}
 Rationale: ''
 CreatedOn: 20-May-2017 13:15:45
 CreatedBy: 'itoy'
 ModifiedOn: 09-Jun-2020 15:14:55
 ModifiedBy: 'ahoward'
 Revision: 7
 SID: 8
 Comments: [0x0 struct]

Cleanup

Clean up commands. Clear the open requirement sets and link sets and close the open models
without saving changes.

slreq.clear;
bdclose all;

See Also
slreq.LinkSet | slreq.find

Introduced in R2018a

 find

3-65

getLinks
Class: slreq.LinkSet
Package: slreq

Get links from link set

Syntax
lks = getLinks(lkset)

Description
lks = getLinks(lkset) returns an array lks of Links from lkset, a LinkSet.

Input Arguments
lkset — Link set
LinkSet

LinkSet from which to get links.
Example: LinkSet with properties:

Output Arguments
lks — Links
Link | Link array

Links in the link set.

Examples
Get Links from a Link Set

load_system('reqs_validation_property_proving_original_model');
rq = slreq.load('original_thrust_reverser_requirements.slreqx');
lk = slreq.load('reqs_validation_property_proving_original_model.slmx');

sl = getLinks(lk);

See Also
sources

Introduced in R2020a

3 Methods

3-66

inspectAttribute
Class: slreq.LinkSet
Package: slreq

Get information about link set custom attribute

Syntax
atrb = inspectAttribute(myLinkSet,name)

Description
atrb = inspectAttribute(myLinkSet,name) returns a structure with information about the
custom attribute name specified by name in the link set myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

Output Arguments
atrb — Custom attribute information
struct

Custom attribute information, returned as a struct.

Examples

Get Link Set Custom Attribute Information

This example shows how to get information about a link set custom attribute.

Load the crs_req requirement files, which describes a cruise control system. Find a link set from the
files and assign it to a variable.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

The custom attribute Target Speed Change tracks whether linked requirements are related to
incrementing or decrementing the speed, or not related at all. Get information about this custom
attribute.

 inspectAttribute

3-67

atrb = inspectAttribute(ls,'Target Speed Change')

atrb = struct with fields:
 name: 'Target Speed Change'
 type: Combobox
 description: 'Tracks if linked requirements are related to incrementing or decrementing speed. Unset if unrelated to speed change.'
 list: {'Unset' 'Increment' 'Decrement'}

Cleanup

Clear the open requirement sets, link sets, and open models without saving changes.

slreq.clear;
bdclose all;

See Also
addAttribute | deleteAttribute | slreq.LinkSet | updateAttribute

Topics
“Manage Custom Attributes for Links by Using the Simulink® Requirements™ API”

Introduced in R2020b

3 Methods

3-68

save
Class: slreq.LinkSet
Package: slreq

Save link set

Syntax
save(lks)
save(lks, filePath)

Description
save(lks) saves the link set lks by using its file name.

save(lks, filePath) saves the link set lks and updates its Name and Filename properties.

Input Arguments
lks — Link set file
slreq.LinkSet object

Link set file, specified as an slreq.LinkSet object.

filePath — File name and path
character vector

The file name and path of the link set, specified as a character vector.
Example: 'C:\MATLAB\myLinkSet.slmx'

Examples
Save Link Set File

Load a link set associated with a Simulink model called fuelsys. Save the link set.

myLinkSet = slreq.load('fuelsys.slx');
save(myLinkSet);

Save the link set to a new file.

save(myLinkSet,'C:\MATLAB\Files\MyLinkSet1.slmx');

See Also
slreq.LinkSet | sources

Introduced in R2018a

 save

3-69

sources
Class: slreq.LinkSet
Package: slreq

Get link sources

Syntax
linkSetSources = sources(lks)

Description
linkSetSources = sources(lks) returns an array of structures linkSetSources that contains
the link sources of all the links in the link set lks.

Input Arguments
lks — Link set
slreq.LinkSet object

Instance of an slreq.LinkSet object.

Output Arguments
linkSetSources — Link set sources
structure

Link set source data, returned as a MATLAB structure.

Examples
Get Link Sources

Load a link set associated with a Simulink model called fuelsys. Get the sources for the link set.

myLinkSet = slreq.load('fuelsys.slx');
mySources = sources(myLinkSet)

mySources =

 1×16 struct array with fields:

 domain
 artifact
 id

See Also
save | slreq.LinkSet

3 Methods

3-70

Introduced in R2018a

 sources

3-71

updateAttribute
Class: slreq.LinkSet
Package: slreq

Update information for link set custom attribute

Syntax
updateAttribute(myLinkSet,atrb,Name,Value)

Description
updateAttribute(myLinkSet,atrb,Name,Value) updates the custom attribute specified by
atrb with properties specified by the name-value pairs Name and Value in the link set myLinkSet.

Input Arguments
myLinkSet — Link set
slreq.LinkSet object

Link set, specified as an slreq.LinkSet object.

atrb — Custom attribute name
character array

Custom attribute name, specified as a character array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Description','My new description.'

Description — Custom attribute description
character array

Custom attribute description, specified as the comma-separated pair consisting of 'Description'
and a character array.
Example: 'Description','My new description.'

List — Combobox list options
cell array

Combobox list options, specified as the comma-separated pair consisting of 'List' and a cell array.
The list of options is valid only if 'Unset' is the first entry. 'Unset' indicates that the user hasn't
chosen an option from the combo box. If the list does not start with 'Unset', it will be automatically
appended as the first entry.
Example: 'List',{'Unset','A','B','C'}

3 Methods

3-72

Note You can only use this name-value pair when the Type property of the custom attribute that
you're updating is Combobox.

Examples

Update Link Set Custom Attribute Information

This example shows how to update custom attribute information for a link set.

Load the crs_req requirement files, which describe a cruise control system. Find a link set in the
files and assign it to a variable.

slreq.load('crs_req');
ls = slreq.find('Type','LinkSet');

Update an Edit Custom Attribute

Add an Edit custom attribute that has a description to the link set. Get the attribute information with
inspectAttribute.

addAttribute(ls,'MyEditAttribute','Edit','Description','Original attribute.');
inspectAttribute(ls,'MyEditAttribute')

ans = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: 'Original attribute.'

Update the custom attribute with a new description. Confirm the change by getting the attribute
information with inspectAttribute.

updateAttribute(ls,'MyEditAttribute','Description','Updated attribute.');
inspectAttribute(ls,'MyEditAttribute')

ans = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: 'Updated attribute.'

Update a Combobox Custom Attribute

Add a Combobox custom attribute with a list of options to the link set. Get the attribute information
with inspectAttribute.

addAttribute(ls,'MyCombobox','Combobox','List',{'Unset','A','B','C'});
inspectAttribute(ls,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''
 list: {'Unset' 'A' 'B' 'C'}

 updateAttribute

3-73

Update the custom attribute with a new list of options. Confirm the change by getting the attribute
information with inspectAttribute.

updateAttribute(ls,'MyCombobox','List',{'Unset','1','2','3'});
inspectAttribute(ls,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''
 list: {'Unset' '1' '2' '3'}

Update the custom attribute with a new list of options and a new description. Confirm the change by
getting the attribute information with inspectAttribute.

updateAttribute(ls,'MyCombobox','List',{'Unset','A1','B2','B3'},'Description',...
 'Updated attribute with new options.');
inspectAttribute(ls,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: 'Updated attribute with new options.'
 list: {'Unset' 'A1' 'B2' 'B3'}

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
addAttribute | deleteAttribute | inspectAttribute | slreq.LinkSet

Topics
“Manage Custom Attributes for Links by Using the Simulink® Requirements™ API”

Introduced in R2020b

3 Methods

3-74

add
Class: slreq.Reference
Package: slreq

Add referenced requirements

Syntax
refNew = add(rs, 'Artifact',FileName,'PropertyName',PropertyValue)
refChild = add(ref,'Artifact',FileName,'PropertyName',PropertyValue)

Description
refNew = add(rs, 'Artifact',FileName,'PropertyName',PropertyValue) adds a
referenced requirement refNew to a requirements set rs which references requirements from the
external document specified by FileName with properties and custom attributes specified by
PropertyName and PropertyValue.

refChild = add(ref,'Artifact',FileName,'PropertyName',PropertyValue) adds a
referenced child requirement refChild to a referenced requirement ref which references
requirements from the external document specified by FileName with properties and custom
attributes specified by PropertyName and PropertyValue.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as an slreq.ReqSet object.

ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as an slreq.Reference object.

FileName — Container identifier
character vector

File name for a top-level container identifier, such as a Microsoft Office document name or an IBM
Rational DOORS Module unique ID.

Output Arguments
refNew — Referenced requirement
slreq.Reference object

The referenced requirement that was added, returned as an slreq.Reference object.

refChild — Referenced child requirement
slreq.Reference object

 add

3-75

The referenced child requirement that was added, returned as an slreq.Reference object.

Examples
Add a Referenced Requirement

% Load a requirement set file

rs = slreq.load('C:\MATLAB\My_Requirement_Set_1.slreqx');

% The parent external document for rs is Req_doc.docx
% Add a top-level referenced requirement to rs
newRef1 = add(rs, 'Artifact', 'crs_req.docx', 'Id', '5.0', 'Summary', ...
 'Additional Requirement');

% Add a child referenced requirement to newRef1
newRef2 = add(newRef1, 'Artifact', 'crs_req.docx', 'Id', '5.1', 'Summary', ...
'Additional Child Requirement');

See Also
slreq.Reference | slreq.ReqSet

Introduced in R2018a

3 Methods

3-76

addComment
Class: slreq.Reference
Package: slreq

Add comments to referenced requirements

Syntax
newComment = addComment(myRef, 'myComment')

Description
newComment = addComment(myRef, 'myComment') adds a comment newComment to the
referenced requirement myRef.

Input Arguments
myRef — Referenced requirement
slreq.Reference object

The referenced requirement to which you add a comment to, specified as an slreq.Reference
object.

Output Arguments
newComment — Comment
struct

Comment added to the referenced requirement, returned as a structure containing these fields.

CommentedBy — Referenced requirement commenter
character vector

The name of the individual or organization who commented on the referenced requirement, returned
as a character vector.

CommentedOn — Date comment was added
datetime

The date on which the comment was added to the referenced requirement, returned as a datetime
value.

CommentedRevision — Comment revision number
scalar

Referenced requirement comment revision number, specified as a scalar.

Text — Comment text
character vector

 addComment

3-77

The text of the added comment, returned as a character vector.

Examples
Add a Comment to a Referenced Requirement

myComment = addComment(myRef, 'New comment')

myComment =

 struct with fields:

 CommentedBy: 'Jane Doe'
 CommentedOn: 21-Dec-2018 13:39:11
 CommentedRevision: 1
 Text: 'New comment'

See Also
getAttribute

Introduced in R2019a

3 Methods

3-78

children
Class: slreq.Reference
Package: slreq

Find children references

Syntax
childRefs = children(ref)

Description
childRefs = children(ref) returns the child referenced requirements childRefs of the
slreq.Reference object ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Reference to a requirement specified as an slreq.Reference object.

Output Arguments
childRef — Child references
slreq.Reference object | slreq.Reference object array

The child referenced requirements belonging to the referenced requirement ref, returned as
slreq.Reference objects.

Examples
Find Child References

% Load a requirements set file and find referenced requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allRefs = find(rs, 'Type', 'Reference')

allRefs =

 1×32 Reference array with properties:

 Keywords
 Artifact
 Id
 Summary
 Description
 SID
 Domain
 SynchronizedOn

 children

3-79

 ModifiedOn

ref1 = allRefs(1);

% Find the children of ref1
childRef = children(ref1)

childRef =

 Reference with properties:

 Keywords: [0×0 char]
 Artifact: 'Req_doc.docx'
 Id: 'R1.1'
 Summary: 'References'
 Description: ''
 SID: 2
 Domain: 'linktype_rmi_word'
 SynchronizedOn: 26-Jul-2015 15:45:22
 ModifiedOn: 27-Jul-2015 12:00:13

See Also
parent | slreq.Reference | slreq.ReqSet

Introduced in R2018a

3 Methods

3-80

find
Class: slreq.Reference
Package: slreq

Find children of parent referenced requirements

Syntax
childRefs = find(ref,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
childRefs = find(ref,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) finds and returns child referenced requirements childRefs of the parent
referenced requirement ref that match the properties specified by PropertyName and
PropertyValue.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement, specified as an slreq.Reference object.

PropertyName — Reference property
character vector

Reference property name, specified as a character vector. See the valid property names in the
properties section of slreq.Reference.
Example: 'Type','Keywords','SID'

PropertyValue — Reference property value
character vector | character array | datetime value | scalar | logical | structure array

Reference property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The data type depends on the specified propertyName. See the valid
property values in the properties section of slreq.Reference

Output Arguments
childRefs — Child referenced requirements
slreq.Reference object | slreq.Reference object array

Child referenced requirements, returned as slreq.Reference objects.

Examples

 find

3-81

Find Child Referenced Requirements

This example shows how to find child referenced requirements that match property values.

Load the crs_req requirement file, which describes a cruise control system, and assign it to a
variable. Find the referenced requirement with index 3, as this referenced requirement has child
referenced requirements.

rs = slreq.load('crs_req');
parentRef = find(rs,'Type','Reference','Index','3')

parentRef =
 Reference with properties:

 Id: 'Functional Requirements'
 CustomId: 'Functional Requirements'
 Artifact: 'crs_req.docx'
 ArtifactId: '?Functional Requirements'
 Domain: 'linktype_rmi_word'
 UpdatedOn: 02-Feb-2018 13:23:13
 CreatedOn: NaT
 CreatedBy: ''
 ModifiedBy: ''
 IsLocked: 1
 Summary: 'Functional Requirements'
 Description: '<div class=WordSection1>...'
 Rationale: ''
 Keywords: {}
 Type: 'Functional'
 SID: 9
 FileRevision: 1
 ModifiedOn: 03-Aug-2017 17:34:56
 Dirty: 0
 Comments: [0x0 struct]
 Index: '3'

Find all the child referenced requirements of parentRef that were modified in revision 1.

childRefs1 = find(parentRef,'FileRevision',1)

childRefs1=1×18 object
 1x18 Reference array with properties:

 Id
 CustomId
 Artifact
 ArtifactId
 Domain
 UpdatedOn
 CreatedOn
 CreatedBy
 ModifiedBy
 IsLocked
 Summary
 Description
 Rationale
 Keywords

3 Methods

3-82

 Type
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Find all the child referenced requirements of parentRef that were modified in revision 1 and have
an SID equal to 12.

childRefs2 = find(parentRef,'FileRevision',1,'SID',12)

childRefs2 =
 Reference with properties:

 Id: 'Activating cruise control'
 CustomId: 'Activating cruise control'
 Artifact: 'crs_req.docx'
 ArtifactId: '?Activating cruise control'
 Domain: 'linktype_rmi_word'
 UpdatedOn: 02-Feb-2018 13:23:13
 CreatedOn: NaT
 CreatedBy: ''
 ModifiedBy: ''
 IsLocked: 1
 Summary: 'Activating cruise control'
 Description: '<div class=WordSection1>...'
 Rationale: ''
 Keywords: {}
 Type: 'Functional'
 SID: 12
 FileRevision: 1
 ModifiedOn: 03-Aug-2017 17:34:56
 Dirty: 0
 Comments: [0x0 struct]
 Index: '3.3'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
slreq.Reference | slreq.ReqSet | slreq.find

Introduced in R2018a

 find

3-83

getAttribute
Class: slreq.Reference
Package: slreq

Get referenced requirement custom attributes

Syntax
val = getAttribute(ref, propertyName)

Description
val = getAttribute(ref, propertyName) gets a referenced requirement property.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Reference to a requirement specified as an slreq.Reference object.

propertyName — Referenced requirement property
character vector

Referenced requirement property name.
Example: 'SID', 'CreatedOn', 'Summary'

Examples
Get Referenced Requirement Attributes

% Load a requirement set file and get the handle to
% one referenced requirement

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
ref1 = find(rs, 'Type', 'Reference', 'Id', 'R10.1');

% Get the Priority (custom attribute) of ref1
summaryRef1 = getAttribute(ref1, 'Priority')

summaryRef1 =

 'Medium'

See Also
setAttribute | slreq.Reference | slreq.ReqSet

Introduced in R2018a

3 Methods

3-84

getImplementationStatus
Class: slreq.Reference
Package: slreq

Query referenced requirement implementation status summary

Syntax
status = getImplementationStatus(ref)
status = getImplementationStatus(ref, 'self')

Description
status = getImplementationStatus(ref) returns the implementation status summary for the
referenced requirement ref and its child references.

status = getImplementationStatus(ref, 'self') returns the implementation status
summary for just the referenced requirement ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement instance, specified as an slreq.Reference object.

Output Arguments
status — Referenced requirement implementation status summary
structure

The implementation status summary for the referenced requirement and its child references,
returned as a MATLAB structure containing these fields.

total — Total number of referenced requirements
double

The total number of Functional referenced requirements (including child references), returned as a
double.

implemented — Implemented referenced requirements
double

The total number of implemented referenced requirements (including child references), returned as a
double.

justified — Justified referenced requirements
double

 getImplementationStatus

3-85

The total number of referenced requirements (including child references), justified for
implementation, returned as a double.

none — Unimplemented referenced requirements
double

The total number of unimplemented referenced requirements (including child references), returned
as a double.

Examples
Get Implementation Status Summary of a Referenced Requirement

% Get the implementation status summary of the referenced requirement ref
% and its child references
refImplStatus = getImplementationStatus(ref)

refImplStatus =

 struct with fields:

 total: 35
 implemented: 23
 justified: 9
 none: 3

% Get the implementation status summary of only the referenced requirement myRef
myRefImplStatus = getImplementationStatus(myRef, 'self')

myRefImplStatus =

 struct with fields:

 implemented: 0
 justified: 0
 none: 0

See Also
updateImplementationStatus

Introduced in R2018b

3 Methods

3-86

getVerificationStatus
Class: slreq.Reference
Package: slreq

Query referenced requirement verification status summary

Syntax
status = getVerificationStatus(ref)
status = getVerificationStatus(ref, 'self')

Description
status = getVerificationStatus(ref) returns the verification status summary for the
referenced requirement ref and all its child references.

status = getVerificationStatus(ref, 'self') returns the verification status summary for
just the referenced requirement ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement instance, specified as an slreq.Reference object.

Output Arguments
status — Referenced requirement verification status summary
structure

The verification status summary for the referenced requirement and its child references, returned as
a MATLAB structure containing these fields.

total — Total number of referenced requirements
double

The total number of referenced requirements (including child references) with Verify links, returned
as a double.

passed — Passed referenced requirements
double

The total number of referenced requirements (including child references) that passed the tests
associated with them, returned as a double.

failed — Failed referenced requirements
double

 getVerificationStatus

3-87

The total number of referenced requirements (including child references) that failed the tests
associated with them, returned as a double.

unexecuted — Unexecuted requirements
double

The total number of referenced requirements (including child references) with unexecuted associated
tests, returned as a double.

justified — Justified referenced requirements
double

The total number of referenced requirements (including child references) that are justified for
verification, returned as a double.

none — Unlinked referenced requirements
double

The total number of referenced requirements (including child references) without links to verification
objects, returned as a double.

Examples
Get Verification Status Summary of Referenced Requirements

% Get the verification status summary of the referenced requirement ref
% and all its child references
refVerifStatus = getVerificationStatus(ref)

refVerifStatus =

 struct with fields:

 total: 70
 passed: 45
 failed: 7
 unexecuted: 10
 justified: 1
 none: 7

% Get the verification status summary of only the referenced requirement myRef
myRefVerifStatus = getVerificationStatus(myRef, 'self')

myRefVerifStatus =

 struct with fields:

 passed: 1
 failed: 0
 unexecuted: 0
 justified: 0
 none: 0

See Also
updateVerificationStatus

3 Methods

3-88

Introduced in R2018b

 getVerificationStatus

3-89

isJustifiedFor
Class: slreq.Reference
Package: slreq

Check if referenced requirement is justified

Syntax
tf = isJustifiedFor(ref, linkType)

Description
tf = isJustifiedFor(ref, linkType) checks if the referenced requirement ref is justified for
the link type specified by linkType.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement to check for justification, specified as an slreq.Reference object.

linkType — Justification link type
'Implement' | 'Verify'

Justification link type, specified as a character vector.

Output Arguments
tf — Justification status
0 | 1

The justification status of the referenced requirement, returned as a Boolean.

Examples
Check if Referenced Requirements Are Justified

% Check if referenced requirement ref1 is justified for Implementation
ref1_Status = isJustifiedFor(ref1, 'Implement')

ref1_Status =

 logical

 1

% Check if referenced requirement ref2 is justified for Verification
ref2_Status = isJustifiedFor(ref2, 'Verify')

3 Methods

3-90

ref2_Status =

 logical

 0

See Also
getImplementationStatus | getVerificationStatus

Introduced in R2018b

 isJustifiedFor

3-91

justifyImplementation
Class: slreq.Reference
Package: slreq

Justify referenced requirements for implementation

Syntax
implementationJustLink = justifyImplementation(ref, jt)

Description
implementationJustLink = justifyImplementation(ref, jt) justifies the referenced
requirement ref for implementation by creating a link implementationJustLink from the
justification jt to ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement to justify for implementation, specified as an slreq.Reference object.

jt — Justification object
slreq.Justification object

Justification object to justify ref for implementation, specified as an slreq.Justification object.

Output Arguments
implementationJustLink — Justification link
slreq.Link object

Link to justification object jt of type Implement, returned as an slreq.Link object.

Examples
% Justify referenced requirement myRef for implementation
% by using a justification object myJust

myImplJustification = justifyImplementation(myRef, myJust)

myImplJustification =

 Link with properties:

 Type: 'Implement'
 Description: 'Cruise Control Mode (crs_req_func_spec#1)'
 Keywords: [0×0 char]
 Rationale: ''

3 Methods

3-92

 CreatedOn: 13-Jan-2017 13:45:12
 CreatedBy: 'John Doe'
 ModifiedOn: 24-Oct-2018 12:25:30
 ModifiedBy: 'Jane Doe'
 Revision: 6
 Comments: [0×0 struct]

See Also
addJustification | getImplementationStatus

Introduced in R2018b

 justifyImplementation

3-93

justifyVerification
Class: slreq.Reference
Package: slreq

Justify referenced requirements for verification

Syntax
verificationJustLink = justifyVerification(ref, jt)

Description
verificationJustLink = justifyVerification(ref, jt) justifies the referenced
requirement ref for verification by creating a link verificationJustLink from the justification jt
to ref.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement to justify for verification, specified as an slreq.Reference object.

jt — Justification object
slreq.Justification object

Justification object to justify ref for verification, specified as an slreq.Justification object.

Output Arguments
verificationJustLink — Justification link
slreq.Link object

Link to justification object jt of type Verify, returned as an slreq.Link object.

Examples
% Justify referenced requirement myRef for verification
% by using a justification object myJust

myVerifJustification = justifyVerification(myRef, myJust)

myVerifJustification =

 Link with properties:

 Type: 'Verify'
 Description: 'Brake Test (crs_req_func_spec#73)'
 Keywords: [0×0 char]
 Rationale: ''

3 Methods

3-94

 CreatedOn: 25-Nov-2017 10:11:35
 CreatedBy: 'John Doe'
 ModifiedOn: 26-Feb-2018 17:16:09
 ModifiedBy: 'Jane Doe'
 Revision: 7
 Comments: [0×0 struct]

See Also
addJustification | getVerificationStatus

Introduced in R2018b

 justifyVerification

3-95

parent
Class: slreq.Reference
Package: slreq

Find parent item of referenced requirement

Syntax
parentObj = parent(ref)

Description
parentObj = parent(ref) returns the parent object parentObj of the slreq.Reference object
req.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement specified as an slreq.Reference object.

Output Arguments
parentObj — Parent object
slreq.Reference object | slreq.ReqSet object

The parent of the referenced requirement ref, returned as an slreq.Reference object or as an
slreq.ReqSet object.

Examples
Find Parent References

% Load a requirements set file and find referenced requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
refs = find(rs, 'Type', 'Reference')

refs =

 1×32 Reference array with properties:

 Keywords
 Artifact
 Id
 Summary
 Description
 SID
 Domain
 SynchronizedOn

3 Methods

3-96

 ModifiedOn

% Find the parent of the first reference element
parentRef1 = parent(refs(1));

parentRef1 =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

See Also
children | slreq.Reference | slreq.ReqSet

Introduced in R2018a

 parent

3-97

remove
Class: slreq.Reference
Package: slreq

Remove referenced requirements

Syntax
count = remove(topRef)

Description
count = remove(topRef) removes all the child referenced requirements under the Import node
topRef as well as the Import node itself. The function returns the number of referenced
requirements removed.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

Output Arguments
count — Removed referenced requirements count
double

The number of referenced requirements removed, returned as a double.

Examples
Remove Referenced Requirements

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirement_Set_1.slreqx');

% Find all referenced requirements in the requirement set
allRefs = find(rs, 'Type', 'Reference')

allRefs =

 1×46 Reference array with properties:

 Id
 CustomId
 Artifact
 ArtifactId
 Domain
 UpdatedOn

3 Methods

3-98

 CreatedOn
 CreatedBy
 ModifiedBy
 IsLocked
 Summary
 Description
 Rationale
 Keywords
 Type
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Remove the top Import node and child referenced requirements under it
count = remove(allRefs(1))

count =

 46

See Also
add

Introduced in R2019a

 remove

3-99

reqSet
Class: slreq.Reference
Package: slreq

Return parent requirements set

Syntax
rsout = reqSet(ref)

Description
rsout = reqSet(ref) returns the parent requirements set rsout to which the referenced
requirement ref belongs.

Input Arguments
ref — Referenced requirement object
slreq.Reference object

Referenced requirement, specified as a slreq.Reference object.

Output Arguments
rsout — Parent requirements set
slreq.ReqSet object

The parent requirements set of the referenced requirement ref, returned as an slreq.ReqSet
object.

Examples
Query Requirements Set Information

% Load a new requirements set file and select one referenced requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allRefs = find(rs,'Type','Reference');
ref = allRefs(1);

% Query which requirements set ref belongs to
reqSet(ref)

ans =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 65

3 Methods

3-100

 Dirty: 0
 CustomAttributeNames: {}

See Also
parent | slreq.Reference | slreq.ReqSet

Introduced in R2018a

 reqSet

3-101

setAttribute
Class: slreq.Reference
Package: slreq

Set referenced requirement custom attributes

Syntax
setAttribute(ref, propertyName, propertyValue)

Description
setAttribute(ref, propertyName, propertyValue) sets a referenced requirement property.
Use this method to set the values of custom attributes that you define for your requirements set.

Input Arguments
ref — Referenced requirement instance
slreq.Reference object

Referenced requirement specified as an slreq.Reference object.

propertyName — Referenced requirement custom attribute
character vector

Referenced requirement custom attribute name.
Example: 'Priority'

propertyValue — Referenced requirement custom attribute value
character vector

Referenced requirement custom attribute name, specified as a character vector.
Example: 'High', 'Medium'

Examples
Set Referenced Requirement Custom Attribute

% Load a requirements set file and get the handle to one requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
ref1 = find(rs, 'Type', 'Reference', 'ID', 'R20.1');

% Set the Priority (custom attribute) of ref1
setAttribute(ref1, 'Priority', 'Low');

See Also
getAttribute | slreq.Reference | slreq.ReqSet

3 Methods

3-102

Introduced in R2018a

 setAttribute

3-103

unlock
Class: slreq.Reference
Package: slreq

Unlock referenced requirements

Syntax
unlock(ref)

Description
unlock(ref) unlocks a referenced requirement for editing.

Input Arguments
ref — Referenced requirement
slreq.Reference object

Referenced requirement to unlock, specified as an slreq.Reference object.

Examples
Unlock an Imported Referenced Requirement

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirement_Set_1.slreqx');

% Find all referenced requirements in the requirement set
allRefs = find(rs, 'Type', 'Reference')

allRefs =

 1×73 Reference array with properties:

 Id
 CustomId
 Artifact
 ArtifactId
 Domain
 UpdatedOn
 CreatedOn
 CreatedBy
 ModifiedBy
 IsLocked
 Summary
 Description
 Rationale
 Keywords
 Type
 SID

3 Methods

3-104

 FileRevision
 ModifiedOn
 Dirty
 Comments

% Unlock a referenced requirement
unlock(allRefs(25))

See Also
unlockAll

Introduced in R2019a

 unlock

3-105

unlockAll
Class: slreq.Reference
Package: slreq

Unlock all child referenced requirements for editing

Syntax
unlockAll(topRef)

Description
unlockAll(topRef) unlocks all the child referenced requirements of the top Import node topRef.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

Examples
Unlock all the Children of a Parent Referenced Requirement

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirement_Set_1.slreqx');

% Find all referenced requirements in the requirement set
allRefs = find(rs, 'Type', 'Reference')

allRefs =

 1×25 Reference array with properties:

 Id
 CustomId
 Artifact
 ArtifactId
 Domain
 UpdatedOn
 CreatedOn
 CreatedBy
 ModifiedBy
 IsLocked
 Summary
 Description
 Rationale
 Keywords
 Type
 SID

3 Methods

3-106

 FileRevision
 ModifiedOn
 Dirty
 Comments

% Unlock all child referenced requirements of the top Import node
unlockall(allRefs(1))

See Also
unlock

Introduced in R2019a

 unlockAll

3-107

updateFromDocument
Class: slreq.Reference
Package: slreq

Update referenced requirements from external requirements document

Syntax
result = updateFromDocument(topRef)

Description
result = updateFromDocument(topRef) updates all the referenced requirements under the
Import node topRef.

Input Arguments
topRef — Import node
slreq.Reference object

Import node, specified as an slreq.Reference object.

Output Arguments
result — Update confirmation
character vector

The result of the Update operation (pass or fail), returned as a character vector.

Examples
Update Referenced Requirements

% Load a requirement set file
rs = slreq.load('C:\MATLAB\My_Requirement_Set_1.slreqx');

% Find all referenced requirements in the requirement set
allRefs = find(rs, 'Type', 'Reference')

allRefs =

 1×46 Reference array with properties:

 Id
 CustomId
 Artifact
 ArtifactId
 Domain
 UpdatedOn
 CreatedOn

3 Methods

3-108

 CreatedBy
 ModifiedBy
 IsLocked
 Summary
 Description
 Rationale
 Keywords
 Type
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments

% Update all child referenced requirements of the top Import node
result = updateFromDocument(allRefs(1))

result =

 'Update completed. Refer to Comments on Import1.'

See Also
slreq.import

Topics
“Update Imported Requirements”

Introduced in R2019a

 updateFromDocument

3-109

addAttribute
Class: slreq.ReqSet
Package: slreq

Add custom attribute to requirement set

Syntax
addAttribute(rs,name,type)
addAttribute(rs,name,'Checkbox','DefaultValue',value)
addAttribute(rs,name,'Combobox','List',options)
addAttribute(rs, ___ ,'Description',descr)

Description
addAttribute(rs,name,type) adds a custom attribute with the name specified by name and the
custom attribute type specified by type to the requirement set rs.

addAttribute(rs,name,'Checkbox','DefaultValue',value) adds a Checkbox custom
attribute with the name specified by name and the default value specified by value to the
requirement set rs.

addAttribute(rs,name,'Combobox','List',options) adds a Combobox custom attribute
with the name specified by name, and the list options specified by options to the requirement set
rs.

addAttribute(rs, ___ ,'Description',descr) adds a custom attribute with the name
specified by name, the type specified by type, and the description specified by descr to the
requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

type — Custom attribute type
'Edit' | 'Checkbox' | 'Combobox' | 'DateTime'

Custom attribute type, specified as a character array. The valid custom attribute types are Edit,
Checkbox, Combobox, and DateTime.

descr — Custom attribute description
character array

3 Methods

3-110

Custom attribute description, specified as a character array.

value — Checkbox default value
false (default) | true

Checkbox default value, specified as a logical 1 (true) or 0 (false).

options — Combobox list options
cell array

Combobox list options, specified as a cell array. The list of options is valid only if 'Unset' is the first
entry. 'Unset' indicates that the user hasn't chosen an option from the combo box. If the list does
not start with 'Unset', it will be automatically appended as the first entry.
Example: {'Unset','A','B','C'}

Examples

Add Custom Attribute to Requirement Set

This example shows how to add a custom attribute of all four types to a requirement set, Edit,
Checkbox, Combobox, and DateTime, and how to add a custom attribute with a description.

Add an Edit Custom Attribute

Load crs_req_func_spec, which describes a cruise control system. Find the requirement set and
assign it to a variable.

slreq.load('crs_req_func_spec');
rs = slreq.find('Type','ReqSet');

Add an Edit custom attribute. Confirm that the attribute was successfully added by using
inspectAttribute.

addAttribute(rs,'MyEditAttribute','Edit');
atrb = inspectAttribute(rs,'MyEditAttribute')

atrb = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: ''

Add a Checkbox Custom Attribute

Add a Checkbox custom attribute with the default value true. Confirm that the attribute was
successfully added by using inspectAttribute.

addAttribute(rs,'MyCheckbox','Checkbox','DefaultValue',true);
atrb2 = inspectAttribute(rs,'MyCheckbox')

atrb2 = struct with fields:
 name: 'MyCheckbox'
 type: Checkbox
 description: ''

 addAttribute

3-111

 default: 1

Add a Combobox Custom Attribute

Add a ComboBox custom attribute with the options Unset, A, B, and C. Confirm that the attribute was
successfully added by using inspectAttribute.

addAttribute(rs,'MyCombobox','Combobox','List',{'Unset','A','B','C'});
atrb3 = inspectAttribute(rs,'MyCombobox')

atrb3 = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''
 list: {'Unset' 'A' 'B' 'C'}

Add a DateTime Custom Attribute

Add a DateTime custom attribute. Confirm that the attribute was successfully added by using
inspectAttribute.

addAttribute(rs,'MyDateTime','DateTime');
atrb4 = inspectAttribute(rs,'MyDateTime')

atrb4 = struct with fields:
 name: 'MyDateTime'
 type: DateTime
 description: ''

Add a Custom Attribute with a Description

Add an Edit custom attribute. Add a description to the custom attribute. Confirm that the attribute
was successfully added by using inspectAttribute.

addAttribute(rs,'MyEditAttribute2','Edit','Description',...
 'You can enter text as the custom attribute value.');
atrb5 = inspectAttribute(rs,'MyEditAttribute2')

atrb5 = struct with fields:
 name: 'MyEditAttribute2'
 type: Edit
 description: 'You can enter text as the custom attribute value.'

Add a ComboBox custom attribute with the options Unset, A, B, and C. Add a description to the
custom attribute. Confirm that the attribute was successfully added by using inspectAttribute.

addAttribute(rs,'MyCombobox2','Combobox','List',{'Unset','A','B','C'},'Description',...
 'This combobox attribute has 4 options.');
atrb6 = inspectAttribute(rs,'MyCombobox2')

atrb6 = struct with fields:
 name: 'MyCombobox2'
 type: Combobox
 description: 'This combobox attribute has 4 options.'

3 Methods

3-112

 list: {'Unset' 'A' 'B' 'C'}

Cleanup

Clear the open requirement sets and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
deleteAttribute | inspectAttribute | slreq.ReqSet | updateAttribute

Topics
“Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API”

Introduced in R2020b

 addAttribute

3-113

addJustification
Class: slreq.ReqSet
Package: slreq

Add justifications to requirement set

Syntax
jt = addJustification(rs)
jt = addJustification(rs, 'PropertyName', PropertyValue)

Description
jt = addJustification(rs) adds a justification jt to the requirement set rs.

jt = addJustification(rs, 'PropertyName', PropertyValue)adds a justification jt to the
requirement set rs with additional properties specified by PropertyName and PropertyValue.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
jt — Justification object
slreq.Justification object

Justification added to the requirement set rs, returned as an slreq.Justification object.

Examples
Add Justifications to Requirement Set

% Add a justification jt1 to a requirement set rs
jt1 = addJustification(rs)

jt1 =

 Justification with properties:

 Id: '70'
 Summary: ''
 Description: ''
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 16-Jan-2018 10:53:28
 CreatedBy: 'John Doe'

3 Methods

3-114

 ModifiedBy: 'Jane Doe'
 SID: 76
 FileRevision: 1
 ModifiedOn: 16-Feb-2018 12:50:43
 Dirty: 0
 Comments: [0×0 struct]

% Add a justification jt2 to a requirement set rs and specify properties
jt2 = addJustification(rs, 'Summary', 'New justification', ...
'Description', 'Justify safety requirement')

jt2 =

 Justification with properties:

 Id: '71'
 Summary: 'New justification'
 Description: 'Justify safety requirement'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 11-Feb-2018 11:45:12
 CreatedBy: 'John Doe'
 ModifiedBy: 'Jane Doe'
 SID: 77
 FileRevision: 1
 ModifiedOn: 12-Feb-2018 13:01:08
 Dirty: 0
 Comments: [0×0 struct]

See Also
justifyImplementation | justifyImplementation | justifyVerification |
justifyVerification

Introduced in R2018b

 addJustification

3-115

close
Class: slreq.ReqSet
Package: slreq

Close a requirements set

Syntax
close(rs)

Description
close(rs) closes a requirements set.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as an slreq.ReqSet object.

Examples
Close a Requirement Set

% Create a new requirements set file
rs1 = slreq.new('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Save the requirements set file
save(rs1);

% Close the requirements set file
close(rs1);

See Also
slreq.ReqSet

Introduced in R2018a

3 Methods

3-116

createReferences
Class: slreq.ReqSet
Package: slreq

Create read-only references to requirement items in third-party documents

Syntax
createReferences(rs, pathToFile, Name, Value)
createReferences(rs, reqFormat, Name, Value)

Description
createReferences(rs, pathToFile, Name, Value) creates read-only references to
requirements content in an external document at pathToFile by using additional Name, Value
arguments to specify import options.

createReferences(rs, reqFormat, Name, Value) creates read-only references to
requirements content in an external document corresponding to the specified registered document
type specified by reqFormat by using additional Name, Value arguments to specify import options.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as a slreq.ReqSet object.

pathToFile — File path
character vector

Path to the requirements document.
Example: 'C:\MATLAB\System_Requirements.docx'

reqFormat — Registered document type label
character vector

Custom registered document type label that you create by using a Custom Document Type extension
API.
Example: 'linktype_rmi_doors'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'columns', '[1 8]', 'RichText', true

 createReferences

3-117

ReqSet — Requirements Set
slreq.ReqSet object

The name of the existing requirements set that you import references to requirements into, specified
as the comma-separated pair of 'ReqSet' and a valid requirements set file name.
Example: 'ReqSet', 'My_Requirements_Set'

RichText — Requirements content imported as rich text
false (default) | true

Option to import requirements content as rich text, specified as the comma-separated pair consisting
of 'RichText' and true or false.
Example: 'RichText', true

bookmarks — Use custom bookmarks in Microsoft Word and Microsoft Excel
true | false

Option to use custom bookmarks in Microsoft Word documents and Microsoft Excel spreadsheets to
import requirements content, specified as the comma-separated pair consisting of 'bookmarks' and
true or false.
Example: 'bookmarks', false

match — Regular expression
character vector

Import requirements by using regular expression pattern matching, specified as the comma-
separated pair consisting of 'match' and a regular expression pattern.
Example: 'match', '^REQ\d+'

columns — Range of columns
double array

Range of columns to import. This option is applicable only for Microsoft Excel spreadsheets.
Example: 'columns', [1 6]

rows — Range of rows
double array

Range of rows to import. This option is applicable only for Microsoft Excel spreadsheets.
Example: 'rows', [3 35]

attributes — Attribute names
cell array

Attribute names to import, specified as a cell array.

Note When importing requirements from a Microsoft Excel spreadsheet, the length of this cell array
must match the number of columns that you specified for import by using the 'columns' option.

Example: 'attributes', {'Test Status', 'Test Procedure'}

3 Methods

3-118

idColumn — ID Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the ID field in the
requirements set.
Example: 'idColumn', 1

summaryColumn — Summary Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Summary field in the
requirements set.
Example: 'summaryColumn', 4

keywordsColumn — Keywords Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Keywords field in the
requirements set.
Example: 'keywordsColumn', 3

descriptionColumn — Description Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Description field in
the requirements set.
Example: 'descriptionColumn', 2

rationaleColumn — Rationale Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Rationale field in the
requirements set.
Example: 'rationaleColumn', 5

Examples
Create Read-Only References to Requirements in Microsoft Office Documents

% Create a new requirements set and save it

rs = slreq.new('newReqSet');
save(rs);

% Create read-only rich text references to requirements
% in a Word document
createReferences(rs, 'C:\Work\Requirements_Spec.docx', ...
'RichText', true);

% Create read-only plain text references to requirements
% in an Excel spreadsheet
createReferences(rs, 'C:\Work\Design_Spec.xlsx', ...

 createReferences

3-119

'columns', [2 6], 'rows', [3 32], 'idColumn', 2, ...
'summaryColumn', 3);

See Also
slreq.Reference | slreq.ReqSet | slreq.import

Introduced in R2018a

3 Methods

3-120

deleteAttribute
Class: slreq.ReqSet
Package: slreq

Delete custom attribute from requirement set

Syntax
deleteAttribute(rs,name,'Force',true)
deleteAttribute(rs,name,'Force',false)

Description
deleteAttribute(rs,name,'Force',true) deletes the custom attribute specified by name from
the requirement set rs, even if the custom attribute is used by requirements in the requirement set.

deleteAttribute(rs,name,'Force',false) deletes the custom attribute specified by name
from the requirement set rs only if the custom attribute is not used by requirements in the
requirement set.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

Examples

Delete Custom Attribute

This example shows how to delete a custom attribute.

Load crs_req_func_spec, which is the requirement file for a cruise control system. Find a
requirement set in the files.

slreq.load('crs_req_func_spec');
rs = slreq.find('Type','ReqSet');

Add an Edit custom attribute to the requirement set. Confirm that it was successfully added by
accessing the CustomAttributeNames property for the requirement set.

addAttribute(rs,'MyCheckbox','Checkbox')
atrb1 = rs.CustomAttributeNames

 deleteAttribute

3-121

atrb1 = 1x1 cell array
 {'MyCheckbox'}

Find a requirement in the requirement set. Set the custom attribute value for the requirement using
setAttribute.

req = find(rs,'ID','#1');
setAttribute(req,'MyCheckbox',true)

The custom attribute MyCheckbox is now used by a requirement. Delete the requirement by using
deleteAttribute with 'Force' set to true. Confirm the deletion by accessing the
CustomAttributeNames property for the requirement set.

deleteAttribute(rs,'MyCheckbox','Force',true)
atrb2 = rs.CustomAttributeNames

atrb2 =

 0x0 empty cell array

Only Delete Custom Attribute if the Attribute is Unused

Add an Edit custom attribute to the requirement set. The attribute is unused because the value is
not set for any links. Confirm that it added by accessing the CustomAttributeNames property for
the requirement set.

addAttribute(rs,'MyEditAttribute','Edit')
atrb3 = rs.CustomAttributeNames

atrb3 = 1x1 cell array
 {'MyEditAttribute'}

You can delete the attribute only if the attribute is unused by setting Force to false. If the attribute
is used by links, then an error will occur. Confirm the deletion by accessing the
CustomAttributeNames property for the requirement set.

deleteAttribute(rs,'MyEditAttribute','Force',false)
atrb4 = rs.CustomAttributeNames

atrb4 =

 0x0 empty cell array

Cleanup

Clean up commands. Clear the open requirement sets and close the open models without saving
changes.

slreq.clear;
bdclose all;

See Also
addAttribute | inspectAttribute | slreq.ReqSet | updateAttribute

Topics
“Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API”

3 Methods

3-122

Introduced in R2020b

 deleteAttribute

3-123

find
Class: slreq.ReqSet
Package: slreq

Find requirements in requirements set that have matching attribute values

Syntax
myReq = find(rs, 'PropertyName', 'PropertyValue')

Description
myReq = find(rs, 'PropertyName', 'PropertyValue') finds and returns an
slreq.Requirement object myReq in the requirements set rs specified by the properties matching
PropertyName and PropertyValue. Property name matching is case-insensitive.

Input Arguments
rs — Requirements set
slreq.ReqSet object

Requirements set, specified as a slreq.ReqSet object.

Output Arguments
myReq — Requirement object
slreq.Requirement object

Requirement, returned as an slreq.Requirement object.

Examples
Find Requirements That Have Matching Attribute Values

% Load a requirements set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Find all editable requirements in the requirement set
allReqs = find(rs, 'Type', 'Requirement');

% Find all referenced requirements in the requirement set
allRefs = find(rs, 'Type', 'Reference');

% Find all requirements with a certain ID
matchedReqs = find(rs, 'ID', 'R1.1');

Find Requirements by Using Regular Expression Matching

You can search for requirements in your requirements sets by constructing regular expression search
patterns by using the tilde (~) symbol.

3 Methods

3-124

% Load a requirements set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Find all requirements that correspond to the controller
controllerReqs = find(rs, 'Type', 'Requirement', 'Summary', '~Controller(?i)\w*')

controllerReqs =

 1×19 Requirement array with properties:

 Id
 Summary
 Keywords
 Description
 Rationale
 SID
 CreatedBy
 CreatedOn
 ModifiedBy
 ModifiedOn
 FileRevision
 Dirty
 Comments

For more information on constructing regular expression search patterns, see “Steps for Building
Expressions”.

See Also
slreq.ReqSet | slreq.find

Introduced in R2018a

 find

3-125

getImplementationStatus
Class: slreq.ReqSet
Package: slreq

Query requirement set implementation status summary

Syntax
status = getImplementationStatus(rs)

Description
status = getImplementationStatus(rs) returns the implementation status for the
requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
status — Requirement set implementation status summary
structure

The implementation status summary for the requirements in the requirement set, returned as a
MATLAB structure containing these fields.

total — Total number of requirements
double

The total number of Functional requirements in the requirement set, returned as a double.

implemented — Implemented requirements
double

The total number of implemented requirements in the requirement set, returned as a double.

justified — Justified requirements
double

The total number of requirements justified for implementation in the requirement set, returned as a
double.

none — Unimplemented requirements
double

The total number of unimplemented requirements in the requirement set, returned as a double.

3 Methods

3-126

Examples
Get Implementation Status Summary of a Requirement Set

% Load a requirements set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Get the implementation status summary of the requirement set rs
implStatus = getImplementationStatus(rs)

implStatus =

 struct with fields:

 total: 25
 implemented: 18
 justified: 5
 none: 2

See Also
updateImplementationStatus

Introduced in R2018b

 getImplementationStatus

3-127

getVerificationStatus
Class: slreq.ReqSet
Package: slreq

Query requirement set verification status summary

Syntax
status = getVerificationStatus(rs)

Description
status = getVerificationStatus(rs) returns the verification status summary of requirements
in the requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

Output Arguments
status — Requirement set verification status summary
structure

The verification status summary for the requirement set, returned as a MATLAB structure containing
these fields.

total — Total number of requirements
double

The total number of requirements in the requirement set with Verify links, returned as a double.

passed — Passed requirements
double

The total number of requirements in the requirement set that passed the tests associated with them,
returned as a double.

failed — Failed requirements
double

The total number of requirements in the requirement set that failed the tests associated with them,
returned as a double.

unexecuted — Unexecuted requirements
double

3 Methods

3-128

The total number of requirements in the requirement set with unexecuted associated tests, returned
as a double.

justified — Justified requirements
double

The total number of requirements justified for verification in the requirement set, returned as a
double.

none — Unlinked requirements
double

The total number of requirements without links to verification objects in the requirement set,
returned as a double.

Examples
Get Verification Status Summary of a Requirement Set

% Load a requirements set file
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Get the verification status summary of the requirements in rs
verifStatus = getVerificationStatus(rs)

verifStatus =

 struct with fields:

 total: 25
 passed: 10
 failed: 5
 unexecuted: 4
 justified: 1
 none: 5

See Also
updateVerificationStatus

Introduced in R2018b

 getVerificationStatus

3-129

importFromDocument
Class: slreq.ReqSet
Package: slreq

Import editable requirements from external documents

Syntax
importFromDocument(rs, pathToFile, Name, Value)

Description
importFromDocument(rs, pathToFile, Name, Value) imports editable requirements with
contents duplicated from an external document at pathToFile using by additional Name, Value
arguments to specify import options.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as a slreq.ReqSet object.

pathToFile — File path
character vector

Path to the requirements document that you want to import editable requirements from.
Example: 'C:\MATLAB\System_Requirements.docx'

ReqSet — Requirements Set
character vector

The name for the existing requirements set that you import requirements into, specified as a
character vector.
Example: 'ReqSet', 'My_Requirements_Set'

RichText — Option to import rich text requirements
false (default) | true

Option to import requirements as rich text, specified as a Boolean value.
Example: 'RichText', true

bookmarks — Option to import requirements using bookmarks
false | true

Option to import requirements content using user-defined bookmarks. This value is true by default
for Microsoft Word documents and false by default for Microsoft Excel spreadsheets.
Example: 'bookmarks', false

3 Methods

3-130

match — Regular expression pattern
character vector

Regular expression pattern for ID search in Microsoft Office documents.
Example: 'match', '^REQ\d+'

attributes — Attribute names
cell array

Attribute names to import, specified as a cell array.

Note When importing requirements from a Microsoft Excel spreadsheet, the length of this cell array
must match the number of columns specified for import using the 'columns' argument.

Example: 'attributes', {'Test Status', 'Test Procedure'}

columns — Range of columns
double array

Range of columns to import from Microsoft Excel spreadsheet, specified as a double array.
Example: 'columns', [1 6]

rows — Range of rows
double array

Range of rows to import from Microsoft Excel spreadsheet, specified as a double array.
Example: 'rows', [3 35]

idColumn — ID Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the ID field in your
requirement set, specified as a double.
Example: 'idColumn', 1

summaryColumn — Summary Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Summary field in your
requirement set, specified as a double.
Example: 'summaryColumn', 4

keywordsColumn — Keywords Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Keywords field in
your requirement set, specified as a double.
Example: 'keywordsColumn', 3

descriptionColumn — Description Column
double

 importFromDocument

3-131

Column in the Microsoft Excel spreadsheet that you want to correspond to the Description field in
your requirement set, specified as a double.
Example: 'descriptionColumn', 2

rationaleColumn — Rationale Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Rationale field in
your requirement set, specified as a double.
Example: 'rationaleColumn', 5

attributeColumn — Custom Attributes Column
double

Column in the Microsoft Excel spreadsheet that you want to correspond to the Custom Attributes
field in your requirement set, specified as a double.
Example: 'attributeColumn', 6

USDM — USDM Format Import Option
character vector

Import from Microsoft Excel spreadsheets specified in the USDM (Universal Specification Describing
Manner) standard format. Specify values as a character vector with the ID prefix optionally followed
by a separator character.
Example: 'RQ -' will match entries with IDs similar to RQ01, RQ01-2, RQ01-2-1 etc.

Examples
Import Editable Requirements from Microsoft Office Documents

% Create a new requirements set and save it
rs = slreq.new('newReqSet');
save(rs);

% Import editable requirements as rich text from a Word document
importFromDocument(rs, 'C:\Work\Requirements_Spec.docx', ...
 'RichText', true);

% Import editable requirements from an Excel spreadsheet
importFromDocument(rs, 'C:\Work\Design_Spec.xlsx', ...
'columns', [2 6], 'rows', [3 32], 'idColumn', 2, ...
'summaryColumn', 3);

For more information on importing requirements from Microsoft Office documents, see “Import
Requirements from Microsoft Office Documents”.

See Also
createReferences | slreq.ReqSet

Introduced in R2018a

3 Methods

3-132

inspectAttribute
Class: slreq.ReqSet
Package: slreq

Get information about requirement set custom attribute

Syntax
atrb = inspectAttribute(rs,name)

Description
atrb = inspectAttribute(rs,name) returns a structure with information about the custom
attribute name specified by name in the requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

name — Custom attribute name
character array

Custom attribute name, specified as a character array.

Output Arguments
atrb — Custom attribute information
struct

Custom attribute information, returned as a struct.

Examples

Get Requirement Set Custom Attribute Information

This example shows how to get information about a requirement set custom attribute.

Load crs_req_func_spec, which describes a cruise control system. Find a requirement set and
assign it to a variable.

slreq.load('crs_req_func_spec');
rs = slreq.find('Type','ReqSet');

Add a Checkbox custom attribute to the requirement set with a description. Use
inspectAttribute to get information about the custom attribute.

 inspectAttribute

3-133

addAttribute(rs,'MyCheckbox','Checkbox','Description',...
 'This checkbox atrribute can be true or false.');
atrb = inspectAttribute(rs,'MyCheckbox')

atrb = struct with fields:
 name: 'MyCheckbox'
 type: Checkbox
 description: 'This checkbox atrribute can be true or false.'
 default: 0

Cleanup

Clear the open requirement sets and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
addAttribute | deleteAttribute | slreq.ReqSet | updateAttribute

Topics
“Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API”

Introduced in R2020b

3 Methods

3-134

save
Class: slreq.ReqSet
Package: slreq

Save a requirements set

Syntax
save(rs)
save(rs, filePath)

Description
save(rs) saves a requirements set by using its file name.

save(rs, filePath) saves a requirements set and updates its Name and Filename properties.

Input Arguments
rs — Requirements set file
slreq.ReqSet object

Requirements set file, specified as a slreq.ReqSet object.

filePath — File name and path
character vector

The file name and path of the requirements set, specified as a character vector.
Example: 'C:\MATLAB\myReqSet.slreqx'

Examples
Save Requirements Set File

% Create the requirements set file
rs = slreq.new('C:\MATLAB\My Requirements Set.slreqx');

% Save the requirements set file
save(rs);

% Save the requirements set file as another requirements set file
save(rs, 'C:\MATLAB\Another Requirements Set.slreqx');

See Also
slreq.ReqSet

Introduced in R2018a

 save

3-135

updateAttribute
Class: slreq.ReqSet
Package: slreq

Update information for requirement set custom attribute

Syntax
updateAttribute(rs,atrb,Name,Value)

Description
updateAttribute(rs,atrb,Name,Value) updates the custom attribute specified by atrb with
properties specified by the name-value pairs Name and Value in the requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

atrb — Custom attribute name
character array

Custom attribute name, specified as a character array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Description','My new description.'

Description — Custom attribute description
character array

Custom attribute description, specified as the comma-separated pair consisting of 'Description'
and a character array.
Example: 'Description','My new description.'

List — Combobox list options
cell array

Combobox list options, specified as the comma-separated pair consisting of 'List' and a cell array.
The list of options is valid only if 'Unset' is the first entry. 'Unset' indicates that the user hasn't
chosen an option from the combo box. If the list does not start with 'Unset', it will be automatically
appended as the first entry.
Example: 'List',{'Unset','A','B','C'}

3 Methods

3-136

Note You can only use this name-value pair when the Type property of the custom attribute that
you're updating is Combobox.

Examples

Update Requirement Set Custom Attribute Information

This example shows how to update custom attribute information for a requirement set.

Load crs_req_func_spec, which describes a cruise control system. Find a requirement set in the
files and assign it to a variable.

slreq.load('crs_req_func_spec');
rs = slreq.find('Type','ReqSet');

Update an Edit Custom Attribute

Add an Edit custom attribute that has a description to the requirement set. Get the attribute
information with inspectAttribute.

addAttribute(rs,'MyEditAttribute','Edit','Description','Original attribute.')
inspectAttribute(rs,'MyEditAttribute')

ans = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: 'Original attribute.'

Update the custom attribute with a new description. Confirm the change by getting the attribute
information with inspectAttribute.

updateAttribute(rs,'MyEditAttribute','Description','Updated attribute.')
inspectAttribute(rs,'MyEditAttribute')

ans = struct with fields:
 name: 'MyEditAttribute'
 type: Edit
 description: 'Updated attribute.'

Update a Combobox Custom Attribute

Add a Combobox custom attribute that has a list of options to the requirement set. Get the attribute
information with inspectAttribute.

addAttribute(rs,'MyCombobox','Combobox','List',{'Unset','A','B','C'})
inspectAttribute(rs,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''
 list: {'Unset' 'A' 'B' 'C'}

 updateAttribute

3-137

Update the custom attribute with a new list of options. Confirm the change by getting the attribute
information with inspectAttribute.

updateAttribute(rs,'MyCombobox','List',{'Unset','1','2','3'})
inspectAttribute(rs,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: ''
 list: {'Unset' '1' '2' '3'}

Update the custom attribute with a new list of options and a new description. Confirm the change by
getting the attribute information with inspectAttribute.

updateAttribute(rs,'MyCombobox','List',{'Unset','A1','B2','B3'},'Description',...
 'Updated attribute with new options.')
inspectAttribute(rs,'MyCombobox')

ans = struct with fields:
 name: 'MyCombobox'
 type: Combobox
 description: 'Updated attribute with new options.'
 list: {'Unset' 'A1' 'B2' 'B3'}

Cleanup

Clear the open requirement sets and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
addAttribute | deleteAttribute | inspectAttribute | slreq.ReqSet

Topics
“Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API”

Introduced in R2020b

3 Methods

3-138

updateImplementationStatus
Class: slreq.ReqSet
Package: slreq

Update requirement set implementation status summary

Syntax
updateImplementationStatus(rs)

Description
updateImplementationStatus(rs) updates the implementation status summary of the
requirement set rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

See Also
getImplementationStatus

Introduced in R2018b

 updateImplementationStatus

3-139

updateVerificationStatus
Class: slreq.ReqSet
Package: slreq

Update requirement set verification status summary

Syntax
updateVerificationStatus(rs)

Description
updateVerificationStatus(rs) updates the verification status summary of the requirement set
rs.

Input Arguments
rs — Requirement set
slreq.ReqSet object

Requirement set, specified as an slreq.ReqSet object.

See Also
getVerificationStatus

Introduced in R2018b

3 Methods

3-140

add
Class: slreq.Requirement
Package: slreq

Add requirement to requirements set

Syntax
req = add(reqObj, 'PropertyName', PropertyValue)

Description
req = add(reqObj, 'PropertyName', PropertyValue) adds a requirement req to a
requirements object reqObj with properties and custom attributes specified by PropertyName and
PropertyValue.

Input Arguments
reqObj — Requirements object
slreq.ReqSet object | slreq.Requirement object

Requirements set or requirement objects, specified as an slreq.ReqSet or as an
slreq.Requirement object.

Output Arguments
req — Requirement
slreq.Requirement object

The requirement that was added, returned as an slreq.Requirement object.

Examples
Add a Requirement to a Requirements Set

% Load a requirements set file

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');

% Add a top-level requirement to the requirements set
req1 = add(rs, 'Id', '5', 'Summary', 'Additional Requirement');

% Add a child requirement to the requirement req1
req2 = add(req1, 'Id', '5.1', 'Summary', 'Additional Child Requirement');

See Also
remove | slreq.ReqSet | slreq.Requirement

 add

3-141

Introduced in R2018a

3 Methods

3-142

children
Class: slreq.Requirement
Package: slreq

Find child requirements of a requirement

Syntax
childReqs = children(req)

Description
childReqs = children(req) returns the child requirements childReqs of the
slreq.Requirement object req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Output Arguments
childReqs — Child requirements
slreq.Requirement object | slreq.Requirement object array

The child requirements belonging to the requirement req, returned as slreq.Requirement objects.

Examples
Find Child Requirements

% Load a requirements set file and add three new requirements

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary', 'Additional Child Requirement 1');
req3 = add(req1, 'Id', '5.2', 'Summary', 'Additional Child Requirement 2');

% Find the children of req1
childReqs = children(req1);

childReqs =

 1×2 Requirement array with properties:

 Id
 Summary
 Keywords

 children

3-143

 Description
 Rationale
 SID
 CreatedBy
 CreatedOn
 ModifiedBy
 ModifiedOn
 FileRevision
 Comments

See Also
parent | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

3 Methods

3-144

copy
Class: slreq.Requirement
Package: slreq

Copy and paste requirement

Syntax
tf = copy(req1,location,req2)

Description
tf = copy(req1,location,req2) copies requirement req1 and pastes it under, before, or after
requirement req2 depending on the location specified by location. The function returns 1 if the
copy and paste is executed.

Note If you copy a requirement and paste it within the same requirement set, the copied
requirement retains the same custom attribute values as the original. If the requirement is pasted
into a different requirement set, the copied requirement does not retain the custom attribute values.

Input Arguments
req1 — Requirement to copy
slreq.Requirement object

Requirement to copy, specified as an slreq.Requirement object.

location — Requirement paste location
'under' | 'before' | 'after'

Paste location, specified as 'under', 'before', or 'after'.

req2 — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 1 or 0 of data type logical.

Examples

 copy

3-145

Copy and Paste a Requirement

This example shows how to copy a requirement and paste it under, before, or after another
requirement.

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find two requirements by index. The first requirement will be copied and pasted in
relation to the second requirement.

rs = slreq.load('crs_req_func_spec');
req1 = find(rs,'Type','Requirement','Index','1');
req2 = find(rs,'Type','Requirement','Index','2');

Paste Under a Requirement

Copy and paste the first requirement, req1, under the second requirement, req2. The first
requirement becomes the last child requirement of req2, which you can verify by finding children of
req2 and comparing the summary of the last child and req1.

tf = copy(req1,'under',req2);
childReqs = children(req2);
lastChild = childReqs(numel(childReqs));
lastChild.Summary

ans =
'Driver Switch Request Handling'

req1.Summary

ans =
'Driver Switch Request Handling'

Paste Before a Requirement

Copy and paste the first requirement, req1, before the second requirement, req2. Confirm that the
requirement was pasted before req2 by checking the index and Summary. The old index of req2 was
2. The index of the pasted requirement should be 2 and the index of req2 should be 3.

tf = copy(req1,'before',req2);
pastedReq = find(rs,'Type','Requirement','Index','2');
pastedReq.Summary

ans =
'Driver Switch Request Handling'

req2.Index

ans =
'3'

Paste After a Requirement

Copy and paste the first requirement, req1, after the second requirement, req2. Confirm that the
requirement was pasted after req2 by checking the index. The index of req2 is 3 and should not
change, which means the index of the pasted requirement should be 4.

tf = copy(req1,'after',req2);
pastedReq2 = find(rs,'Type','Requirement','Index','4');
pastedReq2.Summary

3 Methods

3-146

ans =
'Driver Switch Request Handling'

req2.Index

ans =
'3'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
move | moveDown | moveUp | slreq.Requirement

Introduced in R2020b

 copy

3-147

demote
Class: slreq.Requirement
Package: slreq

Demote requirements

Syntax
deomote(req)

Description
deomote(req) demotes the slreq.Requirement object req one level down in the hierarchy.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Examples
Demote Requirements

% Load a requirements set file and add two new requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary' , 'Child Requirement');

% Demote req2
demote(req2);

% Find the parent of req2
parentReq = parent(req2);

parentReq =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

See Also
promote | slreq.ReqSet | slreq.Requirement

3 Methods

3-148

Introduced in R2018a

 demote

3-149

find
Class: slreq.Requirement
Package: slreq

Find children of parent requirements

Syntax
childReqs = find(req,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
childReqs = find(req,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) finds and returns child requirements childReqs of the parent requirement req
that match the properties specified by PropertyName and PropertyValue.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

PropertyName — Requirement property
character vector

Requirement property name, specified as a character vector. See the valid property names in the
properties section of slreq.Requirement.
Example: 'Type','Keywords','SID'

PropertyValue — Requirement property value
character vector | character array | datetime value | scalar | logical | structure array

Requirement property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The data type depends on the specified propertyName. See the valid
property values in the properties section of slreq.Requirement.

Output Arguments
childReqs — Child requirements
slreq.Requirement object | slreq.Requirement object array

Child requirements, returned as slreq.Requirement objects.

Examples

3 Methods

3-150

Find Child Requirements

This example shows how to find child requirements that match property values.

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find the requirement with index 4, as this requirement has child requirements.

rs = slreq.load('crs_req_func_spec');
parentReq = find(rs,'Type','Requirement','Index','4');

Find all the child requirements of parentReq that were modified in revision 1.

childReqs1 = find(parentReq,'FileRevision',1)

childReqs1=1×10 object
 1x10 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

Find all the child requirements of parentReq that were modified in revision 1 and are Functional
type requirements.

childReqs2 = find(parentReq,'FileRevision',1,'Type','Functional')

childReqs2=1×10 object
 1x10 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

 find

3-151

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
slreq.ReqSet | slreq.Requirement | slreq.find

Introduced in R2018a

3 Methods

3-152

getAttribute
Class: slreq.Requirement
Package: slreq

Get requirement custom attributes

Syntax
val = getAttribute(req, propertyName)

Description
val = getAttribute(req, propertyName) gets a requirement property that is specified by
propertyName.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

propertyName — Requirement property
character vector

Requirement property name.
Example: 'SID', 'CreatedOn', 'Summary'

Examples
Get Requirement Attributes

% Load a requirements set file and get the handle to one requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = find(rs, 'Type', 'Requirement', 'ID', 'R1.1');

% Get the Priority (custom attribute) of req1
summaryReq1 = getAttribute(req1, 'Priority')

summaryReq1 =

 'High'

See Also
setAttribute | slreq.Requirement

Topics
“Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API”

 getAttribute

3-153

Introduced in R2018a

3 Methods

3-154

getImplementationStatus
Class: slreq.Requirement
Package: slreq

Query requirement implementation status summary

Syntax
status = getImplementationStatus(req)
status = getImplementationStatus(req, 'self')

Description
status = getImplementationStatus(req) returns the implementation status summary for the
requirement req and all its child requirements.

status = getImplementationStatus(req, 'self') returns the implementation status
summary for just the requirement req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement instance, specified as an slreq.Requirement object.

Output Arguments
status — Requirement implementation status summary
structure

The implementation status summary for the requirement and its child requirements, returned as a
MATLAB structure containing these fields.

total — Total number of requirements
double

The total number of Functional requirements (including child requirements), returned as a double.

implemented — Implemented requirements
double

The total number of implemented requirements (including child requirements), returned as a
double.

justified — Justified requirements
double

The total number of requirements (including child requirements), justified for implementation,
returned as a double.

 getImplementationStatus

3-155

none — Unimplemented requirements
double

The total number of unimplemented requirements (including child requirements), returned as a
double.

Examples
Get Implementation Status Summary of a Requirement

% Get the implementation status summary of the requirement req
% and all its child requirements
reqImplStatus = getImplementationStatus(req)

reqImplStatus =

 struct with fields:

 total: 20
 implemented: 16
 justified: 3
 none: 1

% Get the implementation status summary of only the requirement myReq
myReqImplStatus = getImplementationStatus(myReq, 'self')

myReqImplStatus =

 struct with fields:

 implemented: 16
 justified: 3
 none: 1

See Also
updateImplementationStatus

Introduced in R2018b

3 Methods

3-156

getVerificationStatus
Class: slreq.Requirement
Package: slreq

Query requirement verification status summary

Syntax
status = getVerificationStatus(req)
status = getVerificationStatus(req, 'self')

Description
status = getVerificationStatus(req) returns the verification status summary for the
requirement req and all its child requirements.

status = getVerificationStatus(req, 'self') returns the verification status summary for
just the requirement req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement instance, specified as an slreq.Requirement object.

Output Arguments
status — Requirement verification status summary
structure

The verification status for the requirement and its child requirements, returned as a MATLAB
structure containing these fields.

total — Total number of requirements
double

The total number of requirements (including child requirements) with Verify links, returned as a
double.

passed — Passed requirements
double

The total number of requirements (including child requirements) that passed the tests associated
with them, returned as a double.

failed — Failed requirements
double

 getVerificationStatus

3-157

The total number of requirements (including child requirements) that failed the tests associated with
them, returned as a double.

unexecuted — Unexecuted requirements
double

The total number of requirements (including child requirements) with unexecuted associated tests,
returned as a double.

justified — Justified requirements
double

The total number of requirements (including child requirements) that are justified for verification in
the requirement set, returned as a double.

none — Unlinked requirements
double

The total number of requirements (including child requirements) without links to verification objects,
returned as a double.

Examples
Get Verification Status Summary of a Requirement

% Get the verification status summary of the requirement req
% and all its child requirements
reqVerifStatus = getVerificationStatus(req)

reqVerifStatus =

 struct with fields:

 total: 34
 passed: 14
 failed: 15
 unexecuted: 4
 justified: 1
 none: 0

% Get the verification status summary of only the requirement myReq
myReqVerifStatus = getVerificationStatus(myReq, 'self')

myReqVerifStatus =

 struct with fields:

 passed: 0
 failed: 1
 unexecuted: 0
 justified: 0
 none: 0

See Also
updateVerificationStatus

3 Methods

3-158

Introduced in R2018b

 getVerificationStatus

3-159

isJustifiedFor
Class: slreq.Requirement
Package: slreq

Check if requirement is justified

Syntax
tf = isJustifiedFor(req, linkType)

Description
tf = isJustifiedFor(req, linkType) checks if the requirement req is justified for the link
type specified by linkType.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement to check for justification, specified as an slreq.Requirement object.

linkType — Justification link type
'Implement' | 'Verify'

Justification link type, specified as a character vector.

Output Arguments
tf — Justification status
0 | 1

The justification status of the requirement, returned as a Boolean.

Examples
Check if Requirements Are Justified

% Check if requirement req1 is justified for Implementation
req1_Status = isJustifiedFor(req1, 'Implement')

req1_Status =

 logical

 1

% Check if requirement req2 is justified for Verification
req2_Status = isJustifiedFor(req2, 'Verify')

3 Methods

3-160

req2_Status =

 logical

 0

See Also
getImplementationStatus | getVerificationStatus

Introduced in R2018b

 isJustifiedFor

3-161

justifyImplementation
Class: slreq.Requirement
Package: slreq

Justify requirements for implementation

Syntax
implementationJustLink = justifyImplementation(req, jt)

Description
implementationJustLink = justifyImplementation(req, jt) justifies the requirement req
for implementation by creating a link implementationJustLink from the justification jt to req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement to justify for implementation, specified as an slreq.Requirement object.

jt — Justification object
slreq.Justification object

Justification object to justify req for implementation, specified as an slreq.Justification object.

Output Arguments
implementationJustLink — Justification link
slreq.Link object

Link to justification object jt of type Implement, returned as an slreq.Link object.

Examples
% Justify requirement myReq for implementation by using a justification object myJust

myImplJustification = justifyImplementation(myReq, myJust)

myImplJustification =

 Link with properties:

 Type: 'Implement'
 Description: 'Cruise Control Mode (crs_req_func_spec#1)'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 13-Jan-2017 13:45:12
 CreatedBy: 'John Doe'

3 Methods

3-162

 ModifiedOn: 24-Oct-2018 12:25:30
 ModifiedBy: 'Jane Doe'
 Revision: 6
 Comments: [0×0 struct]

See Also
addJustification | getImplementationStatus

Introduced in R2018b

 justifyImplementation

3-163

justifyVerification
Class: slreq.Requirement
Package: slreq

Justify requirements for verification

Syntax
verificationJustLink = justifyVerification(req, jt)

Description
verificationJustLink = justifyVerification(req, jt) justifies the requirement req for
verification by creating a link verificationJustLink from the justification jt to req.

Input Arguments
req — Requirement object
slreq.Requirement object

Requirement to justify for verification, specified as an slreq.Requirement object.

jt — Justification object
slreq.Justification object

Justification object to justify req for verification, specified as an slreq.Justification object.

Output Arguments
verificationJustLink — Justification link
slreq.Link object

Link to justification object jt of type Verify, returned as an slreq.Link object.

Examples
% Justify requirement myReq for verification by using a justification object myJust

myVerifJustification = justifyVerification(myReq, myJust)

myVerifJustification =

 Link with properties:

 Type: 'Verify'
 Description: 'Cruise mode detection (crs_req_func_spec#67)'
 Keywords: [0×0 char]
 Rationale: ''
 CreatedOn: 30-Oct-2017 09:10:34
 CreatedBy: 'John Doe'

3 Methods

3-164

 ModifiedOn: 02-Feb-2018 17:08:09
 ModifiedBy: 'Jane Doe'
 Revision: 5
 Comments: [0×0 struct]

See Also
addJustification | getVerificationStatus

Introduced in R2018b

 justifyVerification

3-165

move
Class: slreq.Requirement
Package: slreq

Move requirement in hierarchy

Syntax
tf = move(req1,location,req2)

Description
tf = move(req1,location,req2) moves requirement req1 under, before, or after requirement
req2 depending on the location specified by location. The function returns 1 if the move is
executed without error.

Input Arguments
req1 — Requirement
slreq.Requirement object

Requirement to move, specified as an slreq.Requirement object.

location — Requirement move location
'under' | 'before' | 'after'

Requirement move location, specified as 'under', 'before', or 'after'.

req2 — Requirement to move
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 1 or 0 of data type logical.

Examples

Move a Requirement

This example shows how to move a requirement under, before, or after another requirement.

3 Methods

3-166

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find two requirements by index. The first requirement will be moved in relation to the
second requirement.

rs = slreq.load('crs_req_func_spec');
req1 = find(rs,'Type','Requirement','Index','1');
req2 = find(rs,'Type','Requirement','Index','2');

Move Under a Requirement

Move the first requirement, req1, under the second requirement, req2. The first requirement
becomes the last child requirement of requirement req2, and req2 moves up one in the hierarchy,
which you can verify by checking the index of req1 and req2. The old indices of req1 and req2
were 1 and 2, respectively.

tf = move(req1,'under',req2);
req1.Index

ans =
'1.3'

req2.Index

ans =
'1'

Move Before a Requirement

Move the first requirement, req1, before the second requirement, req2. Confirm that the
requirement was moved correctly by checking the indices of req1 and req2. The indices of req1 and
req2 are now the same as they were originally: 1 and 2, respectively.

tf = move(req1,'before',req2);
req1.Index

ans =
'1'

req2.Index

ans =
'2'

Move After a Requirement

Move the first requirement,req1, after the second requirement, req2. When you move requirement
req1 down in the hierarchy, requirement req2 also moves up, which you can verify by checking the
indices of req1 and req2.

tf = move(req1,'after',req2);
req1.Index

ans =
'2'

req2.Index

ans =
'1'

 move

3-167

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
copy | moveDown | moveUp | slreq.Requirement

Introduced in R2020b

3 Methods

3-168

moveDown
Class: slreq.Requirement
Package: slreq

Move requirement down in hierarchy

Syntax
tf = moveDown(req)

Description
tf = moveDown(req) moves the requirement req down one spot in the hierarchy, and returns 1 if
the move is executed without error. The requirement req cannot be moved to a new level in the
hierarchy.

Input Arguments
req — Requirement
slreq.Requirement

Requirement, specified as an slreq.Requirement object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 1 or 0 of data type logical.

Examples

Move a Requirement Down

This example shows how to move a requirement down in the hierarchy.

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find the requirement with index 3.1.

rs = slreq.load('crs_req_func_spec');
req1 = find(rs,'Type','Requirement','Index','3.1');

Move the requirement down one spot in the hierarchy. Confirm the move by checking the success
status, tf1, and the index.

tf1 = moveDown(req1)

 moveDown

3-169

tf1 = logical
 1

req1.Index

ans =
'3.2'

Find the requirement with index 3.4. This requirement is already at the bottom of its level in the
hierarchy and cannot be moved down further, which you can verify by trying to move it down.
Confirm that the move failed by checking the success status, tf2, and the index.

req2 = find(rs,'Type','Requirement','Index','3.4');
tf2 = moveDown(req2)

tf2 = logical
 0

req2.Index

ans =
'3.4'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
copy | move | moveUp | slreq.Requirement

Introduced in R2020b

3 Methods

3-170

moveUp
Class: slreq.Requirement
Package: slreq

Move requirement up in hierarchy

Syntax
tf = moveUp(req)

Description
tf = moveUp(req) moves the requirement req up one spot in the hierarchy, and returns 1 if the
move is executed without error. The requirement req cannot be moved to a new level in the
hierarchy.

Input Arguments
req — Requirement
slreq.Requirement

Requirement, specified as an slreq.Requirement object.

Output Arguments
tf — Paste success status
0 | 1

Paste success status, returned as a 1 or 0 of data type logical.

Examples

Move a Requirement Up

This example shows how to move a requirement up in the hierarchy.

Load the crs_req_func_spec requirement file, which describes a cruise control system, and assign
it to a variable. Find the requirement with index 3.4.

rs = slreq.load('crs_req_func_spec');
req1 = find(rs,'Type','Requirement','Index','3.4');

Move the requirement up one spot in the hierarchy. Confirm the move by checking the success status,
tf1, and the index.

tf1 = moveUp(req1)

 moveUp

3-171

tf1 = logical
 1

req1.Index

ans =
'3.3'

Find the requirement with index 3.1. This requirement is already at the top of its level in the
hierarchy and cannot be moved up further, which you can verify by trying to move it up. Confirm that
the move failed by checking the success status, tf2, and the index.

req2 = find(rs,'Type','Requirement','Index','3.1');
tf2 = moveUp(req2)

tf2 = logical
 0

req2.Index

ans =
'3.1'

Cleanup

Clear the open requirement sets and link sets, and close the open models without saving changes.

slreq.clear;
bdclose all;

See Also
copy | move | moveDown | slreq.Requirement

Introduced in R2020b

3 Methods

3-172

parent
Class: slreq.Requirement
Package: slreq

Find parent item of requirement

Syntax
parentObj = parent(req)

Description
parentObj = parent(req) returns the parent object parentObj of the slreq.Requirement
object req.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Output Arguments
parentObj — Parent object
slreq.Requirement object | slreq.ReqSet object

The parent of the requirement req, returned as an slreq.Requirement object or as an
slreq.ReqSet object.

Examples
Find Parent Objects of Requirements

% Load a requirements set file and add two new requirements

rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary' , 'Additional Child Requirement');

% Find the parent of req2
parentReq1 = parent(req2)

parentReq1 =

 Requirement with properties:

 Id: '5'
 Summary: 'Additional Requirement'
 Keywords: [0×0 char]

 parent

3-173

 Description: ''
 Rationale: ''
 SID: 10
 CreatedBy: 'John Doe'
 CreatedOn: 05-Oct-2007 16:09:38
 ModifiedBy: 'Jane Doe'
 ModifiedOn: 21-Dec-2016 11:10:05
 Comments: [0×0 struct]

% Find the parent of req1
parentReq2 = parent(req1)

parentReq2 =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

See Also
children | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

3 Methods

3-174

promote
Class: slreq.Requirement
Package: slreq

Promote requirements

Syntax
promote(req)

Description
promote(req) promotes the slreq.Requirement object req one level up in the hierarchy.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

Examples
Find Requirements with Matching Attribute Values

% Load a requirements set file and add two new requirements
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = add(rs, 'Id', '5', 'Summary' , 'Additional Requirement');
req2 = add(req1, 'Id', '5.1', 'Summary' , 'Child Requirement');

% Promote req2
promote(req2);

% Find the parent of req2
parentReq = parent(req2);

parentReq =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 6
 Dirty: 1
 CustomAttributeNames: {}

See Also
demote | slreq.ReqSet | slreq.Requirement

 promote

3-175

Introduced in R2018a

3 Methods

3-176

remove
Class: slreq.Requirement
Package: slreq

Remove requirement from requirement set

Syntax
count = remove(req)
count = remove(parentReq,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN)

Description
count = remove(req) removes the requirement req and returns the number of requirements
deleted. If req has child requirements, they are also deleted.

count = remove(parentReq,'PropertyName1',PropertyValue1,...,'PropertyNameN',
PropertyValueN) removes child requirements of parentReq that match the properties specified by
PropertyName and PropertyValue. The function returns the number of requirements deleted. The
parent requirement is not removed.

Note When you remove a requirement, the variable corresponding to the removed
slreq.Requirement object remains in the workspace but is no longer a valid slreq.Requirement
object.

Input Arguments
req — Requirement
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

parentReq — Parent requirement
slreq.Requirement object

Parent requirement, specified as an slreq.Requirement object.

PropertyName — Requirement property
character vector

Requirement property name, specified as a character vector. See the valid property names in the
properties section of slreq.Requirement.
Example: 'Type', 'Id', 'Keywords'

PropertyValue — Requirement property value
character vector | character array | datetime value | scalar | logical | structure array

 remove

3-177

Requirement property value, specified as a character vector, character array, datetime value, scalar,
logical, or structure array. The value depends on the specified propertyName. See the valid
property values in the properties section of slreq.Requirement.
Example: 'Functional', '1.1.1', 'Design'

Output Arguments
count — Removed requirements count
double

Total number of requirements that were removed, returned as a double.

Examples

Remove a Single Requirement

This example shows how to find and remove a single requirement.

Load a requirement set file. Find a requirement in the requirement set by using the ID number, then
remove it.

rs = slreq.load('crs_req_func_spec.slreqx');
req = find(rs,'Type','Requirement','ID','#2');
count = remove(req)

count = 1

Cleanup

Clean up commands. Clear the open requirement sets without saving changes and close the open
models without saving changes.

slreq.clear;
bdclose all;

Remove a Parent Requirement

This example shows how to remove a parent requirement and its children.

Load a requirement set and find a parent requirement by using the ID number. Confirm that it is a
parent requirement by checking if it has children, then remove the requirement. When you remove a
parent requirement, the children are also removed.

rs = slreq.load('crs_req_func_spec.slreqx');
parentReq1 = find(rs,'Type','Requirement','ID','#24');
childReqs1 = children(parentReq1)

childReqs1=1×12 object
 1x12 Requirement array with properties:

 Type
 Id

3 Methods

3-178

 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID
 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

count2 = remove(parentReq1)

count2 = 13

Cleanup

Clean up commands. Clear the open requirement sets without saving changes and close the open
models without saving changes.

slreq.clear;
bdclose all;

Remove Requirements that Match Property Types

This example shows how to remove child requirements that match a property type, and how to
automate the process of removing all requirements with a matching property type.

Remove Child Requirements that Match Property Types

Load a requirement set file and find a parent requirement by using the ID number.

rs = slreq.load('crs_req_func_spec.slreqx');
parentReq = find(rs,'Type','Requirement','ID','#63');

Confirm that the requirement is a parent requirement by checking if it has children, and remove child
requirements that match that revision number.

childReqs = children(parentReq)

childReqs=1×7 object
 1x7 Requirement array with properties:

 Type
 Id
 Summary
 Description
 Keywords
 Rationale
 CreatedOn
 CreatedBy
 ModifiedBy
 SID

 remove

3-179

 FileRevision
 ModifiedOn
 Dirty
 Comments
 Index

count1 = remove(parentReq,'FileRevision',54)

count1 = 4

Remove Multiple Requirements that Match Property Types

Create a requirements array by finding all requirements in the requirement set that were modified in
revision 18.

reqs = find(rs,'Type','Requirement','FileRevision',18);

Initialize the count variable, then loop through the requirements array and delete all of the
requirements. Increment the count variable each time a requirement is deleted, then display the total
number of requirements deleted.

count2 = 0;
for i = 1:numel(reqs)
 count2 = count2 + remove(reqs(i));
end
count2

count2 = 4

Cleanup

Clean up commands. Clear the open requirement sets without saving changes and close the open
models without saving changes.

slreq.clear;
bdclose all;

See Also
add | slreq.Requirement | slreq.find

Introduced in R2018a

3 Methods

3-180

reqSet
Class: slreq.Requirement
Package: slreq

Return parent requirements set

Syntax
rsout = reqSet(req)

Description
rsout = reqSet(req) returns the parent requirements set rsout to which the requirement req
belongs.

Input Arguments
req — Requirement object
slreq.Requirement object

Requirement, specified as an slreq.Requirement object.

Output Arguments
rsout — Parent requirements set
slreq.ReqSet object

The parent requirements set of the requirement req, returned as an slreq.ReqSet object.

Examples
Query Requirements Set Information

% Load a new requirements set file and select one requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
allReqs = find(rs, 'Type', 'Requirement');
req = allReqs(1);

% Query which requirements set req belongs to
reqSet(req)

ans =

 ReqSet with properties:

 Description: ''
 Name: 'My_Requirements_Set_1'
 Filename: 'C:\MATLAB\My_Requirements_Set_1.slreqx'
 Revision: 63
 Dirty: 0

 reqSet

3-181

 CustomAttributeNames: {}
 CreatedBy: 'Jane Doe'
 CreatedOn: 27-Feb-2017 10:20:39
 ModifiedBy: 'John Doe'
 ModifiedOn: 08-Mar-2017 09:27:31

See Also
parent | slreq.ReqSet | slreq.Requirement

Introduced in R2018a

3 Methods

3-182

setAttribute
Class: slreq.Requirement
Package: slreq

Set requirement custom attributes

Syntax
setAttribute(req, propertyName, propertyValue)

Description
setAttribute(req, propertyName, propertyValue) sets a requirement property.

Input Arguments
req — Requirement instance
slreq.Requirement object

Requirement specified as an slreq.Requirement object.

propertyName — Requirement property
character vector

Requirement property name.
Example: 'SID', 'CreatedOn', 'Summary'

propertyValue — Requirement property value
character vector

Requirement property value.
Example: 'Test Requirement', 'R1.3.1'

Examples
Set Requirement Custom Attributes

% Load a requirement set file and get the handle to one requirement
rs = slreq.load('C:\MATLAB\My_Requirements_Set_1.slreqx');
req1 = find(rs, 'Type', 'Requirement', 'ID', 'R2.1');

% Set the Priority (custom attribute) of req1
setAttribute(req1, 'Priority', 'Low');

req1

req1 =

 Requirement with properties:

 setAttribute

3-183

 Id: 'R2.1'
 Summary: 'Controller Requirement'
 Keywords: [0×0 char]
 Description: ''
 Rationale: ''
 SID: 21
 CreatedBy: 'Jane Doe'
 CreatedOn: 27-Feb-2014 10:15:38
 ModifiedBy: 'John Doe'
 ModifiedOn: 02-Aug-2017 13:49:40
 FileRevision: 43
 Dirty: 1
 Comments: [0×0 struct]
 Priority: Low

See Also
getAttribute | slreq.ReqSet | slreq.Requirement

Topics
“Manage Custom Attributes for Requirements by Using the Simulink® Requirements™ API”

Introduced in R2018a

3 Methods

3-184

Blocks

4

System Requirements
List system requirements in Simulink models
Library: Simulink Requirements

Description
The System Requirements block lists the system-level requirements associated with a model or
subsystem. This block is dynamically populated. It displays system requirements associated with the
level of hierarchy in which the block appears in the model. It does not list requirements associated
with individual blocks in the model. To list desired requirement links in the System Requirements
block:

1 Right-click the background of your model.
2 Select Requirements at This Level.
3 From the top of the context menu, verify that all the requirements you want to list appear in the

System Requirements block.

You can place this block anywhere in your model. It does not connect to other Simulink blocks. You
can have only one System Requirements block in a given subsystem.

When you insert this block into your Simulink model, it is populated with the system requirements, as
shown in the Airflow Calculation subsystem of the slvnvdemo_fuelsys_officereq example.

Each of the listed requirements is an active link to the requirements document. When you double-
click a requirement label, the associated requirements document opens in its editor window, scrolled
to the target location.

Parameters
Block Title

The title of the system requirements list in the model. The default title is System
Requirements. You can enter a customized title, for example, Engine Requirements.

4 Blocks

4-2

Introduced before R2006a

 System Requirements

4-3

	Functions
	slreq.clear
	slreq.cmConfigureVersion
	slreq.cmGetVersion
	slreq.convertAnnotation
	slreq.createLink
	slreq.dngConfigure
	slreq.dngCountLinks
	slreq.dngGetProjectConfig
	slreq.dngGetUsedConfig
	slreq.dngUpdateConfig
	slreq.editor
	slreq.exportViewSettings
	slreq.find
	slreq.generateReport
	slreq.generateTraceabilityMatrix
	slreq.getCurrentObject
	slreq.getExternalURL
	slreq.getReportOptions
	slreq.getTraceabilityMatrixOptions
	slreq.import
	slreq.importViewSettings
	slreq.load
	slreq.inLinks
	slreq.new
	slreq.open
	slreq.outLinks
	slreq.refreshLinkDependencies
	slreq.resetViewSettings
	slreq.show
	slreq.structToObj
	rmi
	rmidata.export
	rmimap.map
	rmidata.save
	rmidocrename
	rmiobjnavigate
	rmipref
	rmiref.insertRefs
	rmiref.removeRefs
	rmitag
	RptgenRMI.doorsAttribs
	slwebview_req

	Classes
	slreq.Justification
	slreq.Link
	slreq.LinkSet
	slreq.Reference
	slreq.ReqSet
	slreq.Requirement
	slreq.verification.services.TAP
	slreq.verification.services.JUnit

	Methods
	slreq.Justification.add
	slreq.Justification.children
	slreq.Justification.copy
	slreq.Justification.demote
	slreq.Justification.find
	slreq.Justification.getAttribute
	slreq.Justification.isHierarchical
	slreq.Justification.move
	slreq.Justification.moveDown
	slreq.Justification.moveUp
	slreq.Justification.parent
	slreq.Justification.promote
	slreq.Justification.remove
	slreq.Justification.reqSet
	slreq.Justification.setAttribute
	slreq.Justification.setHierarchical
	slreq.Link.destination
	slreq.Link.getAttribute
	slreq.Link.isResolved
	slreq.Link.isResolvedDestination
	slreq.Link.isResolvedSource
	slreq.Link.linkSet
	slreq.Link.remove
	slreq.Link.setAttribute
	slreq.Link.setDestination
	slreq.Link.setSource
	slreq.Link.source
	slreq.LinkSet.addAttribute
	slreq.LinkSet.deleteAttribute
	slreq.LinkSet.find
	slreq.LinkSet.getLinks
	slreq.LinkSet.inspectAttribute
	slreq.LinkSet.save
	slreq.LinkSet.sources
	slreq.LinkSet.updateAttribute
	slreq.Reference.add
	slreq.Reference.addComment
	slreq.Reference.children
	slreq.Reference.find
	slreq.Reference.getAttribute
	slreq.Reference.getImplementationStatus
	slreq.Reference.getVerificationStatus
	slreq.Reference.isJustifiedFor
	slreq.Reference.justifyImplementation
	slreq.Reference.justifyVerification
	slreq.Reference.parent
	slreq.Reference.remove
	slreq.Reference.reqSet
	slreq.Reference.setAttribute
	slreq.Reference.unlock
	slreq.Reference.unlockAll
	slreq.Reference.updateFromDocument
	slreq.ReqSet.addAttribute
	slreq.ReqSet.addJustification
	slreq.ReqSet.close
	slreq.ReqSet.createReferences
	slreq.ReqSet.deleteAttribute
	slreq.ReqSet.find
	slreq.ReqSet.getImplementationStatus
	slreq.ReqSet.getVerificationStatus
	slreq.ReqSet.importFromDocument
	slreq.ReqSet.inspectAttribute
	slreq.ReqSet.save
	slreq.ReqSet.updateAttribute
	slreq.ReqSet.updateImplementationStatus
	slreq.ReqSet.updateVerificationStatus
	slreq.Requirement.add
	slreq.Requirement.children
	slreq.Requirement.copy
	slreq.Requirement.demote
	slreq.Requirement.find
	slreq.Requirement.getAttribute
	slreq.Requirement.getImplementationStatus
	slreq.Requirement.getVerificationStatus
	slreq.Requirement.isJustifiedFor
	slreq.Requirement.justifyImplementation
	slreq.Requirement.justifyVerification
	slreq.Requirement.move
	slreq.Requirement.moveDown
	slreq.Requirement.moveUp
	slreq.Requirement.parent
	slreq.Requirement.promote
	slreq.Requirement.remove
	slreq.Requirement.reqSet
	slreq.Requirement.setAttribute

	Blocks
	System Requirements

